Detail View

손목밴드형 수면 모니터를 이용한 히든 마코프 모델 기반 수면 상태 예측 방법
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author 윤상훈 -
dc.contributor.author 이상호 -
dc.contributor.author 강원석 -
dc.date.accessioned 2023-12-26T20:43:25Z -
dc.date.available 2023-12-26T20:43:25Z -
dc.date.created 2017-11-13 -
dc.date.issued 2017-11-11 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/47057 -
dc.description.abstract In this paper, we present Hidden Markov Models (HMM) approach for forecasting the
changes of sleep. Sleep is a major part of our life, and the amount and quality of sleep are
closely related to our health. Forecasting changes of sleep is equivalent to forecasting changes of the health. We use numerous HMM models that is trained by datasets clustered on similarity basis. We find the optimal models with best probabilities in various learned HMM models and use this model to predict next sleep state. The sleep data are collected by Fitbit-HR from 150 healthy persons. The prediction performance was accuracy = 68.53% and recall = 68.19%
-
dc.language Korean -
dc.publisher 대한임베디드공학회 -
dc.title 손목밴드형 수면 모니터를 이용한 히든 마코프 모델 기반 수면 상태 예측 방법 -
dc.title.alternative A method for forecasting sleep state based on Hidden Markov Model using a wrist—worn sleep monitor -
dc.type Conference Paper -
dc.identifier.bibliographicCitation 윤상훈. (2017-11-11). 손목밴드형 수면 모니터를 이용한 히든 마코프 모델 기반 수면 상태 예측 방법. 2017 대한임베디드공학회 추계학술대회, 413–414. -
dc.citation.conferencePlace KO -
dc.citation.conferencePlace 제주 -
dc.citation.endPage 414 -
dc.citation.startPage 413 -
dc.citation.title 2017 대한임베디드공학회 추계학술대회 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

강원석
Kang, Won-Seok강원석

Division of Intelligent Robotics

read more

Total Views & Downloads