Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kumar, Neetesh -
dc.contributor.author Lee, Hock Beng -
dc.contributor.author Tyagi, Barkha -
dc.contributor.author Ovhal, Manoj Mayaji -
dc.contributor.author Cho, Sinyoung -
dc.contributor.author Lee, Jong-Soo -
dc.contributor.author Oh, Jin-Woo -
dc.contributor.author Kang, Jae-Wook -
dc.date.accessioned 2024-01-05T20:10:16Z -
dc.date.available 2024-01-05T20:10:16Z -
dc.date.created 2023-06-09 -
dc.date.issued 2023-07 -
dc.identifier.issn 2367-198X -
dc.identifier.uri http://hdl.handle.net/20.500.11750/47594 -
dc.description.abstract In recent years, researchers have developed spray deposition technology to fabricate tin oxide electron transport layer (ETL) with the aim of manufacturing high-efficiency, large-area perovskite solar cell (PSC). However, the power conversion efficiency (PCE) of PSC based on sprayed SnO2 ETL remains inferior to that of the spin-coated SnO2 ETL. Herein, the combined use of spray deposition and genetically engineered M13 bacteriophages for the deposition of M13-SnO2 biohybrid ETL over large-area (62.5 cm2) substrates is demonstrated. The spray-deposited M13-SnO2 ETLs exhibit mesoporous morphologies with >85% transmittance in UV–vis region. Through the use of M13-SnO2 ETL, the sequential-deposited PSCs achieve a maximum PCE of ≈22.1%. The improved performance of the PSC is attributable to the mesoporous morphology of M13-SnO2 ETL that facilitates the growth of larger perovskite grains. The PSCs based on M13-SnO2 ETLs also display highly consistent photovoltaic performance which manifests the excellent scalability of the spraying process. Furthermore, M13-SnO2-based PSCs exhibit higher ambient stability compared to the SnO2-based PSCs, showing that the use of M13 bacteriophage is incredibly beneficial to both the efficiency and stability of PSCs. © 2023 Wiley-VCH GmbH. -
dc.language English -
dc.publisher Wiley -
dc.title Spray-Deposited, Virus-Templated SnO2 Mesoporous Electron Transport Layer for High-Efficiency, Sequential-Deposited Perovskite Solar Cells -
dc.type Article -
dc.identifier.doi 10.1002/solr.202300065 -
dc.identifier.wosid 000993052300001 -
dc.identifier.scopusid 2-s2.0-85159881767 -
dc.identifier.bibliographicCitation Solar RRL, v.7, no.13 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor grain boundaries -
dc.subject.keywordAuthor large area -
dc.subject.keywordAuthor M13 bacteriophage -
dc.subject.keywordAuthor scalability -
dc.subject.keywordAuthor tin oxide -
dc.subject.keywordPlus FILMS -
dc.subject.keywordPlus M13 BACTERIOPHAGE -
dc.subject.keywordPlus DIRECTED SYNTHESIS -
dc.subject.keywordPlus TEMPERATURE -
dc.subject.keywordPlus PASSIVATION -
dc.subject.keywordPlus NANOSHEETS -
dc.citation.number 13 -
dc.citation.title Solar RRL -
dc.citation.volume 7 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Energy & Fuels; Materials Science -
dc.relation.journalWebOfScienceCategory Energy & Fuels; Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering MNEDL(Multifunctional Nanomaterials & Energy Devices Lab) 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE