Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Park, Jiseong -
dc.contributor.author Ahn, Yongdeok -
dc.contributor.author Lee, Wonhee John -
dc.contributor.author Jin, Siwoo -
dc.contributor.author Jeong, Sejoo -
dc.contributor.author Kim, Jaeyong -
dc.contributor.author Lee, Young-Sam -
dc.contributor.author Lee, Jong-Chan -
dc.contributor.author Seo, Daeha -
dc.date.accessioned 2024-01-30T10:10:11Z -
dc.date.available 2024-01-30T10:10:11Z -
dc.date.created 2023-11-08 -
dc.date.issued 2023-10 -
dc.identifier.issn 0003-2700 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/47707 -
dc.description.abstract In live cells, the plasma membrane is composed of lipid domains separated by hundreds of nanometers in dynamic equilibrium. Lipid phase separation regulates the trafficking and spatiotemporal organization of membrane molecules that promote signal transduction. However, visualizing domains with adequate spatiotemporal accuracy remains challenging because of their subdiffraction limit size and highly dynamic properties. Here, we present a single lipid-molecular motion analysis pipeline (lipid-MAP) for analyzing the phase heterogeneity of lipid membranes by detecting the instantaneous velocity change of a single lipid molecule using the excellent optical properties of nanoparticles, high spatial localization accuracy of single-molecule localization microscopy, and separation capability of the diffusion state of the hidden Markov model algorithm. Using lipid-MAP, individual lipid molecules were found to be in dynamic equilibrium between two statistically distinguishable phases, leading to the formation of small (∼170 nm), viscous (2.5× more viscous than surrounding areas), and transient domains in live cells. Moreover, our findings provide an understanding of how membrane compositional changes, i.e., cholesterol and phospholipids, affect domain formation. This imaging method can contribute to an improved understanding of spatiotemporal-controlled membrane dynamics at the molecular level. © 2023 American Chemical Society -
dc.language English -
dc.publisher American Chemical Society -
dc.title Analysis of Phase Heterogeneity in Lipid Membranes Using Single-Molecule Tracking in Live Cells -
dc.type Article -
dc.identifier.doi 10.1021/acs.analchem.3c02655 -
dc.identifier.wosid 001076099800001 -
dc.identifier.scopusid 2-s2.0-85174798305 -
dc.identifier.bibliographicCitation Analytical Chemistry, v.95, no.43, pp.15924 - 15932 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus ORGANIZATION -
dc.subject.keywordPlus DIFFUSION -
dc.subject.keywordPlus DYNAMICS -
dc.subject.keywordPlus CHOLESTEROL -
dc.subject.keywordPlus ACTIVATION -
dc.subject.keywordPlus TRANSITION -
dc.subject.keywordPlus SEPARATION -
dc.subject.keywordPlus GOLD NANOPARTICLES -
dc.subject.keywordPlus RAFTS -
dc.subject.keywordPlus NUCLEATION -
dc.identifier.url https://pubs.acs.org/cms/10.1021/ancham.2023.95.issue-43/asset/ancham.2023.95.issue-43.xlargecover-4.jpg -
dc.citation.endPage 15932 -
dc.citation.number 43 -
dc.citation.startPage 15924 -
dc.citation.title Analytical Chemistry -
dc.citation.volume 95 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry -
dc.relation.journalWebOfScienceCategory Chemistry, Analytical -
dc.type.docType Article -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE