WEB OF SCIENCE
SCOPUS
Deep neural networks (DNNs) have been deployed in many safety-critical real-time embedded systems. To support DNN tasks in real-time, most previous studies focused on GPU or CPU. However, Edge TPU has not yet been studied for real-time guarantees. This paper presents a real-time DNNs framework for Edge TPU to satisfy multiple DNN inference tasks' timing requirements. The proposed framework provides 1) SRAM allocation and model partitioning techniques and 2) a MIP-based algorithm that determines the amount of SRAM and the number of segments for each task. The experiment result shows that our framework provides 79% higher schedulability than the existing Edge TPU system. © 2023 IEEE.
더보기Department of Electrical Engineering and Computer Science