Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Dzakpasu, Cyril Bubu -
dc.contributor.author Gyan-Barimah, Caleb -
dc.contributor.author Kang, Dongyoon -
dc.contributor.author Song, Jihun -
dc.contributor.author Jin, Dahee -
dc.contributor.author Yu, Jong-Sung -
dc.contributor.author Lee, Yong Min -
dc.date.accessioned 2024-03-15T19:40:17Z -
dc.date.available 2024-03-15T19:40:17Z -
dc.date.created 2024-02-29 -
dc.date.issued 2024-02 -
dc.identifier.issn 0013-4651 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/56528 -
dc.description.abstract Lithium metal is considered one of the most attractive anode materials for next-generation batteries. However, the practical application of rechargeable Li-metal batteries has been hindered by the uncontrollable growth of Li dendrites and large volume changes during electrochemical cycling, leading to low Coulombic efficiency and safety concerns. This study reports a facile process of printing copper nitride nanowires (Cu3N NWs) onto Li metal powder (LMP) composite anode surface via a roll-pressing technique. Cu3N readily reacts with Li to form lithium nitride (Li3N), which is regarded as an excellent component for the interfacial layer on Li metal. The Li3N layer possesses a high ionic conductivity and ensures a homogeneous Li-ion flux, resulting in the suppression of dendrites. As a result, Li/Li symmetric cells assembled with the Li3N-LMP electrode exhibited lower overpotentials and superior cycling performance. Furthermore, NCM622/Li3N-LMP full cells demonstrated better capacity retention behavior (over 90% after 250 cycles) and higher discharge capacities during rate capability tests compared to the bare LMP cell. This study highlights the importance of a rational design of interfacial layers on LMP anodes for stable and long-term cycling. © 2024 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited -
dc.language English -
dc.publisher Electrochemical Society, Inc. -
dc.title Artificial Li3N SEI-Enforced Stable Cycling of Li Powder Composite Anode in Carbonate Electrolytes -
dc.type Article -
dc.identifier.doi 10.1149/1945-7111/ad24be -
dc.identifier.wosid 001162033400001 -
dc.identifier.scopusid 2-s2.0-85185455047 -
dc.identifier.bibliographicCitation Journal of the Electrochemical Society, v.171, no.2 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Li metal powder -
dc.subject.keywordAuthor Li metal battery -
dc.subject.keywordAuthor Lithium nitride -
dc.subject.keywordAuthor Solid electrolyte interphase -
dc.subject.keywordAuthor Dendrites -
dc.subject.keywordPlus LITHIUM-METAL BATTERIES -
dc.subject.keywordPlus RECHARGEABLE BATTERIES -
dc.subject.keywordPlus PROTECTIVE LAYER -
dc.subject.keywordPlus ION -
dc.subject.keywordPlus DEPOSITION -
dc.subject.keywordPlus NITRIDE -
dc.subject.keywordPlus DENSITY -
dc.subject.keywordPlus NITRATE -
dc.subject.keywordPlus LINO3 -
dc.subject.keywordPlus BEHAVIOR -
dc.citation.number 2 -
dc.citation.title Journal of the Electrochemical Society -
dc.citation.volume 171 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Electrochemistry; Materials Science -
dc.relation.journalWebOfScienceCategory Electrochemistry; Materials Science, Coatings & Films -
dc.type.docType Article -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE