Detail View

다양한 밤 상황에서의 데이터 증강을 위해 생성 이미지의 밝기 조절 모델 개발
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author 서정현 -
dc.contributor.author 왕성준 -
dc.contributor.author 전현재 -
dc.contributor.author 김태수 -
dc.contributor.author 임용섭 -
dc.date.accessioned 2024-08-09T08:10:29Z -
dc.date.available 2024-08-09T08:10:29Z -
dc.date.created 2024-05-23 -
dc.date.issued 2023-05-25 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/56738 -
dc.description.abstract As deep learning-based perception techniques continue to advance, research is being conducted to apply technologies such as obstacle detection, semantic segmentation, and depth estimation to autonomous vehicles. However, while most studies show good performance in daylight conditions, there is a frequent degradation of performance in nighttime environments. To address this, a nighttime dataset is needed, but directly acquiring this data is time-consuming and difficult. Therefore, other studies have used image-to-image translation models to generate nighttime data. However, while these models can generate well-formed nighttime images, the resulting images lack a specific brightness and can suffer from noise-induced artifacts. In this study, the Y-Control Loss and Self-attention module were added to improve the existing CycleGAN model and address this problem. -
dc.language Korean -
dc.publisher 한국자동차공학회 -
dc.relation.ispartof 한국자동차공학회 춘계학술대회 -
dc.title 다양한 밤 상황에서의 데이터 증강을 위해 생성 이미지의 밝기 조절 모델 개발 -
dc.title.alternative Adjusting the Brightness of Generated Image for Data Augmentation in Diverse Night Environments -
dc.type Conference Paper -
dc.identifier.bibliographicCitation 서정현. (2023-05-25). 다양한 밤 상황에서의 데이터 증강을 위해 생성 이미지의 밝기 조절 모델 개발. 2023 한국자동차공학회 춘계학술대회, 941–942. -
dc.identifier.url https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11491752 -
dc.citation.conferenceDate 2023-05-24 -
dc.citation.conferencePlace KO -
dc.citation.conferencePlace 평창 -
dc.citation.endPage 942 -
dc.citation.startPage 941 -
dc.citation.title 2023 한국자동차공학회 춘계학술대회 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

임용섭
Lim, Yongseob임용섭

Department of Robotics and Mechatronics Engineering

read more

Total Views & Downloads