Detail View

DC Field Value Language
dc.contributor.author Yea, Junwoo -
dc.contributor.author Ha, Jeongdae -
dc.contributor.author Lim, Kyung Seob -
dc.contributor.author Lee, Hyeokjun -
dc.contributor.author Oh, Saehyuck -
dc.contributor.author Jekal, Janghwan -
dc.contributor.author Yu, Tae Sang -
dc.contributor.author Jung, Han Hee -
dc.contributor.author Park, Jang-Ung -
dc.contributor.author Lee, Taeyoon -
dc.contributor.author Jeong, Jae-Woong -
dc.contributor.author Kim, Hoe Joon -
dc.contributor.author Keum, Hohyun -
dc.contributor.author Lee, Youn Keong -
dc.contributor.author Jang, Kyung-In -
dc.date.accessioned 2024-12-08T18:10:13Z -
dc.date.available 2024-12-08T18:10:13Z -
dc.date.created 2024-12-05 -
dc.date.issued 2024-12 -
dc.identifier.issn 1936-0851 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57265 -
dc.description.abstract Structures such as 3D buckling have been widely used to impart stretchability to devices. However, these structures have limitations when applied to piezoelectric devices due to the uneven distribution of internal strain during deformation. When strains with opposite directions simultaneously affect piezoelectric materials, the electric output can decrease due to cancellation. Here, we report an electrode design tailored to the direction of strain and a circuit configuration that prevents electric output cancellation. These designs not only provide stretchability to piezoelectric nanogenerators (PENGs) but also effectively minimize electric output loss, achieving stretchable PENGs with minimal energy loss. These improvements were demonstrated using an inorganic piezoelectric material (PZT thin film) with a high piezoelectric coefficient, achieving a substantial maximum output power of 8.34 mW/cm3. Theoretical modeling of the coupling between mechanical and electrical properties demonstrates the dynamics of energy harvesting, emphasizing the electrode design. In vitro and in vivo experiments validate the device’s effectiveness in biomechanical energy harvesting. These results represent a significant advancement in stretchable PENGs, offering robust and efficient solutions for wearable electronics and biomedical devices. © 2024 The Authors. Published by American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Curvature-Specific Coupling Electrode Design for a Stretchable Three-Dimensional Inorganic Piezoelectric Nanogenerator -
dc.type Article -
dc.identifier.doi 10.1021/acsnano.4c09933 -
dc.identifier.wosid 001370930200001 -
dc.identifier.scopusid 2-s2.0-85211484776 -
dc.identifier.bibliographicCitation Yea, Junwoo. (2024-12). Curvature-Specific Coupling Electrode Design for a Stretchable Three-Dimensional Inorganic Piezoelectric Nanogenerator. ACS Nano, 18(50), 34096–34106. doi: 10.1021/acsnano.4c09933 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor inorganic -
dc.subject.keywordAuthor 3D structure -
dc.subject.keywordAuthor energy harvesting -
dc.subject.keywordAuthor piezoelectric nanogenerators -
dc.subject.keywordAuthor stretchable electronics -
dc.subject.keywordPlus ENERGY -
dc.subject.keywordPlus PERFORMANCE -
dc.identifier.url https://pubs.acs.org/cms/10.1021/ancac3.2024.18.issue-50/asset/ancac3.2024.18.issue-50.xlargecover-3.jpg -
dc.citation.endPage 34106 -
dc.citation.number 50 -
dc.citation.startPage 34096 -
dc.citation.title ACS Nano -
dc.citation.volume 18 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Show Simple Item Record

File Downloads

공유

qrcode
공유하기

Related Researcher

김회준
Kim, Hoe Joon김회준

Department of Robotics and Mechatronics Engineering

read more

Total Views & Downloads