Detail View

Extreme heat flux cooling from functional copper inverse opal-coated manifold microchannels
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Kong, Daeyoung -
dc.contributor.author Kwon, Heungdong -
dc.contributor.author Jang, Bongho -
dc.contributor.author Kwon, Hyuk-Jun -
dc.contributor.author Asheghi, Mehdi -
dc.contributor.author Goodson, Kenneth E. -
dc.contributor.author Lee, Hyoungsoon -
dc.date.accessioned 2024-12-16T13:40:15Z -
dc.date.available 2024-12-16T13:40:15Z -
dc.date.created 2024-08-05 -
dc.date.issued 2024-09 -
dc.identifier.issn 0196-8904 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57289 -
dc.description.abstract The utilization of a hierarchical microstructure and three-dimensional (3D) manifold for liquid delivery and liquid/vapor extraction could potentially improve the single-phase/two-phase thermal performance of microcoolers for high-heat-flux microelectronics applications exceeding 1 kW cm−2. In this work, we utilize a conformal coating of 8-μm-thick copper inverse opal (CuIO) films with ∼ 5-μm pore size on silicon microchannels in combination with a polydimethylsiloxane 3D manifold to remove heat fluxes up to 1147 W cm−2 under a water inlet temperature and flow rate of 20 °C and 200 g min−1, respectively. We achieved a convective thermal resistance of 0.068 cm2 K W−1 and total pressure drop of 32 kPa. Moreover, owing to copper micropores, a better hot-spot temperature uniformity (<6 K) with the aid of improved boiling nucleation was achieved. The interchip microchannel with a functional porous material and 3D manifold offers a disruptive thermal-management solution for high-performance electronic devices such as data centers, defense weapons, and power electronics for electric vehicles. © 2024 Elsevier Ltd -
dc.language English -
dc.publisher Elsevier -
dc.title Extreme heat flux cooling from functional copper inverse opal-coated manifold microchannels -
dc.type Article -
dc.identifier.doi 10.1016/j.enconman.2024.118809 -
dc.identifier.wosid 001277469200001 -
dc.identifier.scopusid 2-s2.0-85199096912 -
dc.identifier.bibliographicCitation Kong, Daeyoung. (2024-09). Extreme heat flux cooling from functional copper inverse opal-coated manifold microchannels. Energy Conversion and Management, 315. doi: 10.1016/j.enconman.2024.118809 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Thermal management -
dc.subject.keywordAuthor Single- and two-phase cooling -
dc.subject.keywordAuthor Manifold microchannel -
dc.subject.keywordAuthor Copper inverse opals -
dc.subject.keywordPlus SINGLE-PHASE -
dc.subject.keywordPlus SINK ARRAY -
dc.subject.keywordPlus ELECTRONICS -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus FLUIDS -
dc.citation.title Energy Conversion and Management -
dc.citation.volume 315 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Thermodynamics; Energy & Fuels; Mechanics -
dc.relation.journalWebOfScienceCategory Thermodynamics; Energy & Fuels; Mechanics -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

권혁준
Kwon, Hyuk-Jun권혁준

Department of Electrical Engineering and Computer Science

read more

Total Views & Downloads