WEB OF SCIENCE
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kong, Daeyoung | - |
| dc.contributor.author | Kwon, Heungdong | - |
| dc.contributor.author | Jang, Bongho | - |
| dc.contributor.author | Kwon, Hyuk-Jun | - |
| dc.contributor.author | Asheghi, Mehdi | - |
| dc.contributor.author | Goodson, Kenneth E. | - |
| dc.contributor.author | Lee, Hyoungsoon | - |
| dc.date.accessioned | 2024-12-16T13:40:15Z | - |
| dc.date.available | 2024-12-16T13:40:15Z | - |
| dc.date.created | 2024-08-05 | - |
| dc.date.issued | 2024-09 | - |
| dc.identifier.issn | 0196-8904 | - |
| dc.identifier.uri | http://hdl.handle.net/20.500.11750/57289 | - |
| dc.description.abstract | The utilization of a hierarchical microstructure and three-dimensional (3D) manifold for liquid delivery and liquid/vapor extraction could potentially improve the single-phase/two-phase thermal performance of microcoolers for high-heat-flux microelectronics applications exceeding 1 kW cm−2. In this work, we utilize a conformal coating of 8-μm-thick copper inverse opal (CuIO) films with ∼ 5-μm pore size on silicon microchannels in combination with a polydimethylsiloxane 3D manifold to remove heat fluxes up to 1147 W cm−2 under a water inlet temperature and flow rate of 20 °C and 200 g min−1, respectively. We achieved a convective thermal resistance of 0.068 cm2 K W−1 and total pressure drop of 32 kPa. Moreover, owing to copper micropores, a better hot-spot temperature uniformity (<6 K) with the aid of improved boiling nucleation was achieved. The interchip microchannel with a functional porous material and 3D manifold offers a disruptive thermal-management solution for high-performance electronic devices such as data centers, defense weapons, and power electronics for electric vehicles. © 2024 Elsevier Ltd | - |
| dc.language | English | - |
| dc.publisher | Elsevier | - |
| dc.title | Extreme heat flux cooling from functional copper inverse opal-coated manifold microchannels | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1016/j.enconman.2024.118809 | - |
| dc.identifier.wosid | 001277469200001 | - |
| dc.identifier.scopusid | 2-s2.0-85199096912 | - |
| dc.identifier.bibliographicCitation | Kong, Daeyoung. (2024-09). Extreme heat flux cooling from functional copper inverse opal-coated manifold microchannels. Energy Conversion and Management, 315. doi: 10.1016/j.enconman.2024.118809 | - |
| dc.description.isOpenAccess | FALSE | - |
| dc.subject.keywordAuthor | Thermal management | - |
| dc.subject.keywordAuthor | Single- and two-phase cooling | - |
| dc.subject.keywordAuthor | Manifold microchannel | - |
| dc.subject.keywordAuthor | Copper inverse opals | - |
| dc.subject.keywordPlus | SINGLE-PHASE | - |
| dc.subject.keywordPlus | SINK ARRAY | - |
| dc.subject.keywordPlus | ELECTRONICS | - |
| dc.subject.keywordPlus | PERFORMANCE | - |
| dc.subject.keywordPlus | FLUIDS | - |
| dc.citation.title | Energy Conversion and Management | - |
| dc.citation.volume | 315 | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Thermodynamics; Energy & Fuels; Mechanics | - |
| dc.relation.journalWebOfScienceCategory | Thermodynamics; Energy & Fuels; Mechanics | - |
| dc.type.docType | Article | - |
Department of Electrical Engineering and Computer Science