WEB OF SCIENCE
SCOPUS
Thin-film solid oxide fuel cells (TF-SOFCs) open up new possibilities for SOFCs beyond their current reach by lowering the operating temperature. Here, we highlight key strategies to push the envelope of TF-SOFCs—scalability, performance, and stability—through the development of all cell components. Our innovations include using a conventional ceramic NiO-YSZ anode support modified with a physical vapor deposited anode functional layer, enabling reliable and scalable gas-impermeable thin-film electrolytes. To achieve a state-of-the-art performance of 1 W cm−2 at 500 °C, we optimized each cell component: reducing anode particle size and introducing a mixed ionic and electronic conductor; enhancing cathode performance via deposition optimization of La0.6Sr0.4CoO3; and decreasing electrolyte ohmic resistance with a tri-layer GDC-YSZ-GDC structure using minimal thickness of YSZ. Long-term stability tests, >500 h, revealed that Ni protrusion through the electrolyte is the key degradation mechanism in TF-SOFCs. By lowering the Ni content in the anode, we achieved 1000 h durability with a degradation rate of 2.9 % kh−1. Furthermore, we scaled up the cell to 5 × 5 cm2 without compromising performance and achieved >15 W total power per cell at 500 °C, demonstrating practical applicability of TF-SOFCs. These strategies advance TF-SOFC technology and provide key insights into developing low-temperature SOFCs with improved scalability, performance, and stability. © 2025 The Authors
더보기