WEB OF SCIENCE
SCOPUS
Motion sickness is characterized by nausea, dizziness, and vomiting, often caused by sensory conflict during passive motion. This study addresses the limitations of existing single-modal approaches by using a multimodal classification framework that integrates electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and inertial measurement unit (IMU) signals. Data from 12 participants were analyzed using a transformer-based model. The EEG + fNIRS model achieved the highest k-fold cross-validation accuracy (79.51%) and AUC (85.36%) but had limited leave-one-subject-out performance (<60%). Model interpretation identified EEG features, particularly from PO7, as the most critical, with IMU features such as Z-axis acceleration providing complementary information. While the approach demonstrates the potential of multimodal classification, challenges in intersubject generalization require further refinement. © 2025 IEEE.
더보기