Detail View

DC Field Value Language
dc.contributor.author Lim, Hyeongtae -
dc.contributor.author Kwon, Hyeokjin -
dc.contributor.author Jang, Jae Eun -
dc.contributor.author Kwon, Hyuk-Jun -
dc.date.accessioned 2025-07-03T19:10:12Z -
dc.date.available 2025-07-03T19:10:12Z -
dc.date.created 2025-05-23 -
dc.date.issued 2025-05 -
dc.identifier.issn 1936-0851 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/58603 -
dc.description.abstract The digitization of human senses has driven innovation across various technologies and transformed our daily lives, yet the digitization of olfaction remains a challenging frontier. Artificial olfactory systems, or electronic noses (e-noses), offer great potential for environmental monitoring, food safety, healthcare, and the fragrance industry. However, integrating sensor arrays that mimic olfactory receptors remains difficult, typically requiring complex, repetitive, and costly fabrication processes. In this research, we report the development of a porous laser-induced graphene (LIG) sensor array with in situ-doped cerium oxide nanoparticles for the classification of odorant molecules. By adjusting the laser irradiation parameters, we achieve a high degree of physical and chemical diversity in both LIG and CeO x . Consequently, a sensor array exhibiting diverse response patterns to different odorant molecules can be fabricated through one-step laser irradiation of a polymer precursor. Using t-distributed stochastic neighbor embedding (t-SNE) and support vector machine (SVM)-based machine learning, we accurately predict the type and concentration of nine odorant molecules used in perfumes and cosmetics, achieving a high accuracy exceeding 95%. This study provides a rapid and straightforward solution for creating functional olfactory receptor-mimicking arrays, advancing the development of artificial olfaction systems. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Intelligent Olfactory System Utilizing In Situ Ceria Nanoparticle-Integrated Laser-Induced Graphene -
dc.type Article -
dc.identifier.doi 10.1021/acsnano.5c03601 -
dc.identifier.wosid 001472508200001 -
dc.identifier.scopusid 2-s2.0-105003201052 -
dc.identifier.bibliographicCitation ACS Nano, v.19, no.18, pp.17850 - 17862 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor laser-induced graphene -
dc.subject.keywordAuthor laser process -
dc.subject.keywordAuthor cerium oxide -
dc.subject.keywordAuthor electrical nose -
dc.subject.keywordAuthor odorants -
dc.subject.keywordAuthor machine learning -
dc.subject.keywordAuthor flexible device -
dc.subject.keywordPlus GAS SENSORS -
dc.subject.keywordPlus OXIDE -
dc.subject.keywordPlus RECOGNITION -
dc.subject.keywordPlus LAYER -
dc.identifier.url https://pubs.acs.org/cms/10.1021/ancac3.2025.19.issue-18/asset/ancac3.2025.19.issue-18.xlargecover-5.jpg -
dc.citation.endPage 17862 -
dc.citation.number 18 -
dc.citation.startPage 17850 -
dc.citation.title ACS Nano -
dc.citation.volume 19 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

장재은
Jang, Jae Eun장재은

Department of Electrical Engineering and Computer Science

read more

Total Views & Downloads