Detail View

Physically Informed Sideslip Angle Estimation for Electric Vehicles Using Lateral Tire Force Sensors and a GPR-UKF Observer

Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Nam, Kanghyun -
dc.contributor.author Wang, Yafei -
dc.contributor.author Fujimoto, Hiroshi -
dc.date.accessioned 2026-02-09T01:40:13Z -
dc.date.available 2026-02-09T01:40:13Z -
dc.date.created 2025-12-11 -
dc.date.issued ACCEPT -
dc.identifier.issn 0278-0046 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/59957 -
dc.description.abstract This article presents a nonlinear sideslip angle estimation framework that directly incorporates lateral tire force measurements into an observer structure. To address the limitations of conventional approaches that rely on tire models and slip angle approximations, a physically grounded tire model is developed that features load-dependent cornering stiffness, relaxation dynamics, and time-varying parameter adaptation. Cornering stiffness is estimated via a regression-based method using only measurable signals, and a Gaussian process regression (GPR) model is introduced to estimate the front-rear cornering stiffness. The resulting estimates are integrated into an unscented Kalman filter (UKF) observer for robust sideslip angle estimation under nonlinear and transient conditions. The framework is experimentally validated using a full-scale vehicle equipped with in-wheel motors (IWMs) and lateral tire force sensors. Results confirm that the proposed UKF-based observer achieves accurate and stable sideslip angle estimation during aggressive maneuvers and across varying road surfaces. This approach enables high-fidelity, real-time state estimation for advanced driver-assistance and automated driving applications. -
dc.language English -
dc.publisher Institute of Electrical and Electronics Engineers -
dc.title Physically Informed Sideslip Angle Estimation for Electric Vehicles Using Lateral Tire Force Sensors and a GPR-UKF Observer -
dc.type Article -
dc.identifier.doi 10.1109/TIE.2025.3626629 -
dc.identifier.wosid 001627710400001 -
dc.identifier.scopusid 2-s2.0-105023440300 -
dc.identifier.bibliographicCitation IEEE Transactions on Industrial Electronics -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor electric vehicle (EV) -
dc.subject.keywordAuthor Gaussian process regression (GPR) -
dc.subject.keywordAuthor Estimation -
dc.subject.keywordAuthor lateral tire force sensor -
dc.subject.keywordAuthor sideslip angle estimation -
dc.subject.keywordAuthor unscented Kalman filter (UKF) -
dc.subject.keywordAuthor Force sensors -
dc.subject.keywordAuthor Vehicle dynamics -
dc.subject.keywordAuthor Observers -
dc.subject.keywordAuthor Force -
dc.subject.keywordAuthor Tires -
dc.subject.keywordAuthor Adaptation models -
dc.subject.keywordAuthor Load modeling -
dc.subject.keywordAuthor Dynamics -
dc.subject.keywordAuthor Kalman filters -
dc.subject.keywordAuthor Cornering stiffness estimation -
dc.subject.keywordPlus DESIGN -
dc.subject.keywordPlus REAL-TIME ESTIMATION -
dc.citation.title IEEE Transactions on Industrial Electronics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Automation & Control Systems; Engineering; Instruments & Instrumentation -
dc.relation.journalWebOfScienceCategory Automation & Control Systems; Engineering, Electrical & Electronic; Instruments & Instrumentation -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

남강현
Nam, Kanghyun남강현

Department of Robotics and Mechatronics Engineering

read more

Total Views & Downloads

???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???: