Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor Jang, Jae Eun -
dc.contributor.author Shin, Jeong Hee -
dc.date.accessioned 2018-03-14T02:03:28Z -
dc.date.available 2018-03-14T02:03:28Z -
dc.date.issued 2018 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000006956 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/6027 -
dc.description.abstract There has been increasing demand for electronic devices with ultra-high working frequency or speed to process big data quickly, especially in the fields of communications, the military, and aerospace as well as a high performance control process unit (CPU). Although parallel computing or computational method have been studied to process big data, it is limited by Amdahl’s law which describes speed saturation even with large number of processors. Therefore, improvement of fundamental components such as diode and transis-tor can be a basic solution. The p-n junction and Schottky barrier are widely used for switching behavior in diode and transistor structure, so far. The switching speed can be controlled easily by the channel length be-tween source and drain in conventional metal-oxide semiconductor field-effect transistor (MOSFET). The channel should be as short as possible to drive high switching speed, while the electrons cannot be controlled well by gate bias due to short channel effect in the p-n junction and Schottky barrier based MOSFET. Elec-tron mobility was considered instead of physical dimension. Although high electron mobility transistor (HEMT), based on III-V group materials, is expected to increase the speed, its theoretical frequency limit is less than 1THz, even with several nanometer channel length. Therefore, conventional switching mechanisms should be substituted to new mechanism which can drive high speed without electron retardation. Tunneling mechanism in non-semiconductive materials was considered in metal-insulator-metal (MIM) structure. Alt-hough MIM tunneling structure can provide ultra-high working speeds (>THz), the very low contrast ratio between forward and reverse currents results in poor working efficiency. Improving efficiency in MIM tunnel devices is highly motivated for high-speed efficient switching elements.

Improving efficiency in various MIM tunnel structures is the main work of this dissertation. Although the work function differences and multi-stack insulators in MIM structure are widely used to increase effi-ciency, these are limited by low work function differences in metallic materials and increase of uncertainty factors, respectively. In here, we suggested asymmetrically geometric design to obtain different tunneling probabilities in MIM structure. 50% ratio of shifted tunneling distance could be obtained by small angle of pointed shape. By theoretical investigation and simulation, geometric design can induces much shorter or longer tunneling distance, which is effective approach for enhancing contrast ratio. In the vertical structure, over 70% ratio of shifted tunneling distance could be theoretically expected by electrical field simulation (5nm Al2O3 and 20° angle of pointed shape). Resulting from comparison of 20° and 90° angle of pointed shape shows large different tunneling probabilities of angle dependence (0.306% and 0.014%, respectively). Therefore, geometric effect is promising method to increase working efficiency.

The quality of insulator materials is one of the key parameters to enhance geometric effect. The vacu-um which is closed to ideal insulation was used to investigate only geometric effect in MIM transistor struc-ture. Laterally moved tunneling electrons can be controlled by bottom a gate electrode, proved by quite good contrast ratio (12.7) and controlling threshold voltage of FN tunneling (5.25V) under vacuum state (3 × 10-6 torr). Even though these parameters related to efficiency are better than that of conventional metal-insulator-metal diode structure, the threshold voltage should be within 5V for compatible to conventional complemen-tary metal-oxide semiconductor (CMOS). Lateral MIM structure, by using sputtered SiO2 instead of vacuum to decrease threshold voltage and working voltage, shows poor contrast ratio and a little gate effect. While the vacuum guarantees quality of insulation by vacuum pressure, the quality of insulator materials is defined by defect or pinhole, which are normally ranked by deposition methods. Furthermore, selection of insulation materials was also important for improving efficiency. Although the band gap of Al2O3 is larger than that of HfO2, the working efficiency was significantly improved by blocking reverse current well. In general, large band gap insulator materials are inappropriate for a tunneling device, due to the low tunneling current. How-ever, in our approach, since the issue of low tunneling probability is compensated by the sharp tip structure, the larger band gap insulator produced better working efficiency with the appropriate current density.

Directionality of electron movement was considered in geometric designed MIM transistor structure for high-speed and improving efficiency. It is relevant to technical ways to define the channel length. The gap between source (geometric designed electrode) and drain is important parameter to operate high speed in MIM transistor structure. While small gap is not reliable in lateral structure, defined by even electron beam lithography, reliable gap in vertical structure was achieved by deposition system controlled with Å level. Alt-hough the electrons are not effectively controlled in vertical orient structure, applying a floating electrode in vertical MIM transistor can control the tunneling current with little leakage current. Low threshold voltage (0.75V) and considerable efficiency (37 contrast ratio) can be achieved by bias control of floating electrode. It shows reliable I-V characteristics under high temperature environment up to 398K, proved that tunneling phenomenon is dominant. By estimating cut-off frequency (0.82 THz), vertical MIM tunneling transistor with floating electrode can be expected for THz applications in various fields, such as communication devic-es, high speed electrical switches, and high performance control process units (CPUs), or other new concept devices. ⓒ 2017 DGIST
-
dc.description.statementofresponsibility open -
dc.description.tableofcontents Ⅰ. Introduction 1--

1.1 Background and motivation 1--

1.2 Related works 5--

1.3 Objectives 10--

1.4 Thesis organization 11--



ⅠI. Geometric effect in metal-insulator-metal structure13--

2.1 Introduction 13--

2.2 Theory of geometric design in potential equation 13--

2.3 The simulation of geometric effect in MIM structure 17--

2.4 Angle dependence of geometric effect 22--



ⅠII. Lateral MIM transistor 24--

3.1 Introduction 24--

3.2 Fabrication of lateral MIM structure 24--

3.2.1 Fabrication of lateral metal-vacuum-metal (MVM) transistor 24--

3.2.2 Fabrication of lateral metal-insulator-metal (MIM) transistor 26--

3.3 Lateral metal-vacuum-metal (MVM) transistor 28--

3.3.1 Characteristics of source and drain in lateral MVM structure 30--

3.3.2 Gate effect of multi tip electrode in MVM structure 31--

3.4 Lateral metal-insulator-metal (MIM) transistor structure 36--

3.4.1 Simulation of lateral MIM transistor structure 37--

3.4.2 Electrical characteristics of lateral MIM transistor structure 40--

3.5 Limit of lateral MVM and MIM transistor structure 41--



ⅠV. Vertical MIM diode structure 43--

4.1 Introduction 43--

4.2 Fabrication of vertical MIM structure 43--

4.2.1 Fabrication of vertical stack-up MIM diode with a rectangular electrode 43--

4.2.2 Fabrication of vertical stack-up MIM diode with multi sharp electrodes 47--

4.2.3 Fabrication of vertical stack-up MIM diode with 5 sharp electrodes 50--

4.3 Investigation of rectangular type electrode in vertical MIM diode structure 50--

4.4 Investigation of sharp type electrode in vertical MIM diode structure 55--

4.4.1 Theoretical study of sharp electrode in vertical MIM diode structure by simulation 55--

4.4.2 Electrical characteristics of multiple sharp electrodes in vertical MIM diode structure 61--

4.4.3 Investigation of insulator selection for geometric effect 68--



V. Vertical MIM transistor structure 70--

5.1 Introduction 70--

5.2 Fabrication of vertical MIM structure 70--

5.2.1 Fabrication of vertical MIM transistor with bottom or top gate electrode 70--

5.2.2 Fabrication of vertical MIM transistor with floating electrode 73--

5.3 Vertical MIM transistor 75--

5.3.1 Locating electrode in vertical MIM transistor 75--

5.3.1.1 Bottom gate electrode in vertical MIM transistor 75--

5.3.1.2 Top gate electrode in vertical MIM transistor 79--

5.3.2 Vertical MIM transistor with a floating electrode 83--

5.3.2.1 Simulation of vertical MIM transistor with a floating electrode 84--

5.3.2.2 Electrical characteristics of vertical MIM transistor with a floating electrode 89--

5.3.2.3 Working mechanism of vertical MIM tunneling transistor with floating electrode 93--

5.3.2.4 Temperature dependence 100--

5.3.2.5 Frequency response 102--



VI. Conclusion 104--

6.1 Summary 104--

6.2 Future works 105--

6.2.1 Experimental frequency response using RF measurement 105--

6.2.2 Size or thickness dependence of floating electrode for higher contrast ratio 107--

6.2.3 Vertical stack-up MIM tunneling transistor with graphene inter layer 108--





References 109--
-
dc.format.extent 113 -
dc.language eng -
dc.publisher DGIST -
dc.subject MIM tunnel device -
dc.subject tunneling -
dc.subject geometric effect -
dc.subject working efficiency -
dc.subject contrast ratio -
dc.subject MIM 소자 -
dc.subject 터널링 -
dc.subject 기하학적 효과 -
dc.subject 효율 -
dc.subject 스위칭 대조비 -
dc.title High Speed Tunneling Transistor based on Metallic Materials -
dc.title.alternative 금속 성질을 가지는 물질 기반의 고속 동작 터널링 트랜지스터 -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.200000006956 -
dc.description.alternativeAbstract 전자소자의 빠른 동작속도의 요구는 여러분야에 의해서 증가되어지고 있다. 이로인하여 속도를 증가시키려는 노력이 다양한 분야에서 이루어지고 있다. 컴퓨터 분야에서는 parallel computing이라는 기술이 사용되고 있지만, Amdahl의 법칙에 의하면 이것은 속도의 증가에 대한 한계를 가지고 있다. 따라서 기본적은 소자에서의 속도 향상이 기본적인 해결 방법이다. p-n 접합과 Schottky 장벽이 일반적인 스위칭 동작을 하는 다이오드나 트랜지스터에 사용되고 있다. 상업적인 MOSFET(metal-oxide semiconductor field-effect transistor)는 채널의 길이에 따라서 스위칭 속도가 결정되지만, 너무 짧아지게 되면 전류를 조절하지 못하게 된다. 다른 방법으로 높은 전자 이동성(high electron mobility)을 가지는 물질을 이용하였지만, 이론적으로 짧은 채널을 사용하여도 동작주파수의 한계는 1THz이다. 따라서 고속동작에 적합한 메카니즘인 터널링이 고려되고 있다. MIM(metal-insulator-metal) 구조내에서 THz 이상의 동작이 가능하지만, 스위칭 동작에 대조비(contrast ratio)가 낮다.

본 논문은 고속동작을 위한 다양한 MIM 소자에서 효율을 높이는 것에 초점을 두고 있다. 다른 일함수를 사용하거나 다층의 절연막을 이용하여 효율을 올리고자 하는 방법도 있지만. 이런 방법은 효과가 미미하거나 공정상 절연막에 예기치못한 결점 등에 의해 성능이 제한된다. 이 논문에서는 기하학적 효과를 이용하여 효율을 증가하는 것을 제안하고 있다. 이론적으로 50% 정도의 터널링 거리를 변화시켜주어서 스위칭 동작에 대조비를 증가시키기에는 아주 효과적인 방법이다. 수직적인 구조에서는 시뮬레이션을 통해서 70% 정도의 터널링 거리를 변화 시켜줄 수 있으며, 20도와 90도의 뾰족한 구조에서 큰 차이의 터널링 확률(각각 0.306%와 0.014%)을 얻을 수 있었다. 따라서 기하학적 구조는 효율을 높이기위한 유망한 방법이라는 것을 이론적으로나 실험적으로 증명하였다.

또한 절연막의 질이 효율을 높이는데 있어서 중요한 역할을 한다. 기하학적 효과만을 보기위해서 이상적인 절연막인 진공을 선택했다. 진공 안에서 12.7이라는 좋은 스위칭 대조비를 얻을 수 있었고, 문턱전압의 범위가 5.25V 정도 되는 것을 확인했다. 다만 상업적인 CMOS(complementary metal-oxide semiconductor)와 호환되기 위해서는 5V이내에서의 동작이 필요한데, 진공에서는 다소 높은 동작 전압이 필요하다. 따라서 이를 낮추기 위해서 진공대신 절연막을 사용하였으나 절연막이 질이 떨어져서 상당히 나쁜 수치의 대조비를 얻었다. 또한 Al2O3와 HfO2의 절연막에서의 기하학적 효과를 확인해봤다. 일반적으로는 반대의 전류의 흐름을 막아줘야 효율이 좋아지기 때문에 밴드갭이 큰 물질(Al2O3) 일 수록 효율이 좋다. 하지만 밴드갭이 큰 물질은 터널링 확률이 적어지기 때문에 터널렁 소자에 적합하지 않지만, 이 논문에서 제안한 기하학적 효과에 의해서 그 문제가 해결된다. 따라서, 기하학 효과를 사용한 소자의 경우 밴드갭이 큰 물질이 더 높은 효율을 낼 수가 있다.

기하학적 MIM 트랜지스터에서 채널의 방향성에 대해서 고려되었다. 소스 전극과 드레인 전극간의 간격이 중요한 요소인데, 수평적 구조에서는 같은 조건으로 제작을 하여도 재현성이 떨어지게 된다. 수직적 구조에서는 증착하는 절연막을 두께를 Å단위로 조절이 가능하기 때문에 훨씬 더 좋은 전기적 특성을 얻을 수 있지만, 효과적인 게이트 효과를 줄 수 있는 위치를 선정하기가 어렵다. 이 논문에서는 플로팅 전극을 이용하여 효과적인 게이트 효과를 줄 수 있었으며, 0.75V 정도의 낮은 문턱전압과 37 정도의 높은 스위칭 동작 대조비를 얻을 수 있었다. 또한 상온에서 398K까지 온도에서 온도 안정성을 측정하여 터널링 효과가 우세한 것을 확인하였다. 추정되는 cut-off 주파수는 0.82THz 이며, 이를 통하여 다양한 분야에서 THz 응용분야에 적용 가능하다.
-
dc.description.degree Doctor -
dc.contributor.department Information and Communication Engineering -
dc.contributor.coadvisor Lee, Youn Gu -
dc.date.awarded 2018. 2 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.date.accepted 2018-01-05 -
dc.contributor.alternativeDepartment 대학원 정보통신융합전공 -
dc.contributor.alternativeName 신정희 -
dc.contributor.alternativeName 장재은 -
dc.contributor.alternativeName 이윤구 -
Files in This Item:
정보통신_신정희.pdf

정보통신_신정희.pdf

기타 데이터 / 9.77 MB / Adobe PDF download
Appears in Collections:
Department of Electrical Engineering and Computer Science Theses Ph.D.

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE