Cited time in webofscience Cited time in scopus

Ammonium Vanadium Bronze (NH4V4O10) as a High-Capacity Cathode Material for Nonaqueous Magnesium-Ion Batteries

Ammonium Vanadium Bronze (NH4V4O10) as a High-Capacity Cathode Material for Nonaqueous Magnesium-Ion Batteries
Esparcia, Eugene A., Jr.Chae, Munseok S.Ocon, Joey D.Hong, Seung-Tae
DGIST Authors
Hong, Seung-Tae
Issued Date
Article Type
Magnesium-ion batteries (MIBs) offer improved safety, lower cost, and higher energy capacity. However, lack of cathode materials with considerable capacities in conventional nonaqueous electrolyte at ambient temperature is one of the great challenges for their practical applications. Here, we present high magnesium-ion storage performance and evidence for the electrochemical magnesiation of ammonium vanadium bronze NH4V4O10 as a cathode material for MIBs. NH4V4O10 was synthesized via a conventional hydrothermal reaction. It shows reversible magnesiation with an initial discharge capacity of 174.8 mAh g-1 and the average discharge voltage of ∼2.31 V (vs Mg/Mg2+) using 0.5 M Mg(ClO4)2 in acetonitrile as the electrolyte. Cyclic voltammetry, galvanostatic, discharge-charge, FTIR, XPS, powder XRD, and elemental analyses unequivocally show evidence for the reversible magnesiation of the material and suggest that keeping the ammonium ions in the interlayer space of NH4V4O10 could be crucial for the structural stability with a sacrifice of initial capacity but much enhanced retention capacity. This is the first demonstration of electrochemical magnesiation with a high capacity above 2 V (vs Mg/Mg2+) using a conventional organic electrolyte with a relatively low water concentration. © 2018 American Chemical Society.
American Chemical Society
Related Researcher
  • 홍승태 Hong, Seung-Tae 에너지공학과
  • Research Interests Magnesium; calcium; and zinc ion batteries; lithium all-solid-state batteries; Inorganic materials discovery; Solid state chemistry; Crystallography; Mg; Ca; Zn 이온 이차전지; 리튬 전고체전지; 신 무기재료 합성; 고체화학; 결정화학
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Battery Materials Discovery Laboratory 1. Journal Articles


  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.