Cited 0 time in webofscience Cited 2 time in scopus

Ammonium Vanadium Bronze (NH4V4O10) as a High-Capacity Cathode Material for Nonaqueous Magnesium-Ion Batteries

Title
Ammonium Vanadium Bronze (NH4V4O10) as a High-Capacity Cathode Material for Nonaqueous Magnesium-Ion Batteries
Authors
Esparcia, Eugene A., Jr.Chae, Munseok S.Ocon, Joey D.Hong, Seung-Tae
DGIST Authors
Hong, Seung-Tae
Issue Date
2018-06
Citation
Chemistry of Materials, 30(11), 3690-3696
Type
Article
Article Type
Article
Keywords
MG BATTERIESINTERCALATIONINSERTIONOXIDEELECTROLYTESV2O5NANOBELTSBINDERHOST
ISSN
0897-4756
Abstract
Magnesium-ion batteries (MIBs) offer improved safety, lower cost, and higher energy capacity. However, lack of cathode materials with considerable capacities in conventional nonaqueous electrolyte at ambient temperature is one of the great challenges for their practical applications. Here, we present high magnesium-ion storage performance and evidence for the electrochemical magnesiation of ammonium vanadium bronze NH4V4O10 as a cathode material for MIBs. NH4V4O10 was synthesized via a conventional hydrothermal reaction. It shows reversible magnesiation with an initial discharge capacity of 174.8 mAh g-1 and the average discharge voltage of ∼2.31 V (vs Mg/Mg2+) using 0.5 M Mg(ClO4)2 in acetonitrile as the electrolyte. Cyclic voltammetry, galvanostatic, discharge-charge, FTIR, XPS, powder XRD, and elemental analyses unequivocally show evidence for the reversible magnesiation of the material and suggest that keeping the ammonium ions in the interlayer space of NH4V4O10 could be crucial for the structural stability with a sacrifice of initial capacity but much enhanced retention capacity. This is the first demonstration of electrochemical magnesiation with a high capacity above 2 V (vs Mg/Mg2+) using a conventional organic electrolyte with a relatively low water concentration. © 2018 American Chemical Society.
URI
http://hdl.handle.net/20.500.11750/9003
DOI
10.1021/acs.chemmater.8b00462
Publisher
American Chemical Society
Related Researcher
  • Author Hong, Seung-Tae Discovery Lab(Batteries & Materials Discovery Laboratory)
  • Research Interests Magnesium, sodium and lithium ion rechargeable batteries; New inorganic materials discovery; Solid state chemistry; Crystallography; Mg, Na, Li 이온 이차전지; 신 무기재료 합성; 고체화학; 결정화학
Files:
There are no files associated with this item.
Collection:
Department of Energy Science and EngineeringDiscovery Lab(Batteries & Materials Discovery Laboratory)1. Journal Articles


qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE