Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Jung, Han Hee -
dc.contributor.author Song, Juwon -
dc.contributor.author Nie, Shuang -
dc.contributor.author Jung, Han Na -
dc.contributor.author Kim, Min Seok -
dc.contributor.author Jeong, Jae-Woong -
dc.contributor.author Song, Young Min -
dc.contributor.author Song, Jizhou -
dc.contributor.author Jang, Kyung-In -
dc.date.accessioned 2018-09-17T12:52:22Z -
dc.date.available 2018-09-17T12:52:22Z -
dc.date.created 2018-09-17 -
dc.date.issued 2018-11 -
dc.identifier.issn 2365-709X -
dc.identifier.uri http://hdl.handle.net/20.500.11750/9284 -
dc.description.abstract The applications of modern optoelectronic devices have been extended, and they now provide practical means for seamless real-time monitoring of blood flow dynamics, by being integrated with flexible and stretchable wearable sensor platform technology. However, thermal management of these devices remains limited by undesired thermal energy originating from the heating of the light-emitting diode. Specifically, the surface temperature of the optoelectronic device becomes very high compared to that of the adjacent biological tissue, causing challenges in skin–optoelectronics integration and functional deterioration of the light source. In this study, an optoelectronic module that integrates the light-emitting diode, photodetector, and a thin metallic heat sink element for sustainable in situ thermal management is developed. Experimental and computational analysis results indicate that the proposed optoelectronic device has excellent heat dissipation capabilities for thermally safe long-term usability, due to the high thermal conductivity of the device and film-type geometrical design of the embedded heat sink for skin application. The proposed optoelectronic device architecture with metallic heat sink offers an ideal option for blood flow monitoring by providing both mechanical and thermal compatibility with biological tissue suitable for long-term clinical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim -
dc.language English -
dc.publisher Wiley-Blackwell -
dc.title Thin Metallic Heat Sink for Interfacial Thermal Management in Biointegrated Optoelectronic Devices -
dc.type Article -
dc.identifier.doi 10.1002/admt.201800159 -
dc.identifier.wosid 000450366300002 -
dc.identifier.scopusid 2-s2.0-85052488160 -
dc.identifier.bibliographicCitation Advanced Materials Technologies, v.3, no.11 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor III-V optoelectronics -
dc.subject.keywordAuthor flexible electronics -
dc.subject.keywordAuthor heat dissipation -
dc.subject.keywordAuthor pulse oximetry -
dc.subject.keywordAuthor thermal damage -
dc.subject.keywordPlus STRETCHABLE ELECTRONICS -
dc.subject.keywordPlus SKIN -
dc.subject.keywordPlus SYSTEM -
dc.subject.keywordPlus ARTIFACT -
dc.subject.keywordPlus OXIMETRY -
dc.subject.keywordPlus SILICON -
dc.subject.keywordPlus DESIGN -
dc.subject.keywordPlus SENSOR -
dc.subject.keywordPlus BLOOD -
dc.subject.keywordPlus ARRAY -
dc.citation.number 11 -
dc.citation.title Advanced Materials Technologies -
dc.citation.volume 3 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Materials Science -
dc.relation.journalWebOfScienceCategory Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Robotics and Mechatronics Engineering Bio-integrated Electronics Lab 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE