Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Alcantara, Carlos C. J. ko
dc.contributor.author Kim, Sangwon ko
dc.contributor.author Lee, Sunkey ko
dc.contributor.author Jang, Bumjin ko
dc.contributor.author Thakolkaran, Prakash ko
dc.contributor.author Kim, Jin-Young ko
dc.contributor.author Choi, Hongsoo ko
dc.contributor.author Nelson, Bradley J. ko
dc.contributor.author Pane, Salvador ko
dc.date.accessioned 2019-05-28T07:47:17Z -
dc.date.available 2019-05-28T07:47:17Z -
dc.date.created 2019-03-15 -
dc.date.issued 2019-04 -
dc.identifier.citation Small, v.15, no.16 -
dc.identifier.issn 1613-6810 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/9858 -
dc.description.abstract Biocompatibility and high responsiveness to magnetic fields are fundamental requisites to translate magnetic small-scale robots into clinical applications. The magnetic element iron exhibits the highest saturation magnetization and magnetic susceptibility while exhibiting excellent biocompatibility characteristics. Here, a process to reliably fabricate iron microrobots by means of template-assisted electrodeposition in 3D-printed micromolds is presented. The 3D molds are fabricated using a modified two-photon absorption configuration, which overcomes previous limitations such as the use of transparent substrates, low writing speeds, and limited depth of field. By optimizing the geometrical parameters of the 3D molds, metallic structures with complex features can be fabricated. Fe microrollers and microswimmers are realized that demonstrate motion at ≈20 body lengths per second, perform 3D motion in viscous environments, and overcome higher flow velocities than those of “conventional 3D printed helical microswimmers.” The cytotoxicity of these microrobots is assessed by culturing them with human colorectal cancer (HCT116) cells for four days, demonstrating their good biocompatibility characteristics. Finally, preliminary results regarding the degradation of iron structures in simulated gastric acid liquid are provided. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim -
dc.language English -
dc.publisher Wiley-VCH Verlag -
dc.title 3D Fabrication of Fully Iron Magnetic Microrobots -
dc.type Article -
dc.identifier.doi 10.1002/smll.201805006 -
dc.identifier.wosid 000467263300002 -
dc.identifier.scopusid 2-s2.0-85062359564 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.description.journalClass 1 -
dc.contributor.nonIdAuthor Alcantara, Carlos C. J. -
dc.contributor.nonIdAuthor Kim, Sangwon -
dc.contributor.nonIdAuthor Jang, Bumjin -
dc.contributor.nonIdAuthor Thakolkaran, Prakash -
dc.contributor.nonIdAuthor Pane, Salvador -
dc.identifier.citationVolume 15 -
dc.identifier.citationNumber 16 -
dc.identifier.citationTitle Small -
dc.type.journalArticle Article -
dc.description.isOpenAccess N -
dc.subject.keywordAuthor magnetic microrobots -
dc.subject.keywordAuthor template-assisted deposition -
dc.subject.keywordAuthor upstream motion -
dc.subject.keywordAuthor direct laser writing -
dc.subject.keywordAuthor iron electrodeposition -
dc.subject.keywordPlus Biocompatibility -
dc.subject.keywordPlus Diseases -
dc.subject.keywordPlus Electrodeposition -
dc.subject.keywordPlus Electrodes -
dc.subject.keywordPlus Fabrication -
dc.subject.keywordPlus Geometry -
dc.subject.keywordPlus Iron -
dc.subject.keywordPlus Magnetic susceptibility -
dc.subject.keywordPlus Molds -
dc.subject.keywordPlus Saturation magnetization -
dc.subject.keywordPlus Two photon processes -
dc.subject.keywordPlus Direct laser writing -
dc.subject.keywordPlus Iron electrodeposition -
dc.subject.keywordPlus Magnetic microrobots -
dc.subject.keywordPlus Template assisted deposition -
dc.subject.keywordPlus upstream motion -
dc.subject.keywordPlus 3D printers -
dc.contributor.affiliatedAuthor Kim, Jin-Young -
dc.contributor.affiliatedAuthor Choi, Hongsoo -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE