Detail View

Through-Wall Remote Human Voice Recognition Using Doppler Radar With Transfer Learning
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Khanna, Rohan ko
dc.contributor.author Oh, Daegun ko
dc.contributor.author Kim, Youngwook ko
dc.date.accessioned 2019-06-10T07:32:36Z -
dc.date.available 2019-06-10T07:32:36Z -
dc.date.created 2019-05-30 -
dc.date.issued 2019-06 -
dc.identifier.citation IEEE Sensors Journal, v.19, no.12, pp.4571 - 4576 -
dc.identifier.issn 1530-437X -
dc.identifier.uri http://hdl.handle.net/20.500.11750/9901 -
dc.description.abstract We investigated the feasibility of using Doppler radar to recognize human voices by capturing the micro-Doppler signatures of vibrations from the larynx and mouth. The signatures produced through the vibrations of a human being's vocal cords generate unique micro-Doppler signatures, depending on the letters pronounced. These can then be used to classify and recognize different words and letters. In this paper, we could successfully capture echo signals using the Doppler radar when a human subject spoke seven musical notes from Do to Ti and alphabet letters from A to Z. Spectrogram analysis was conducted for classification purposes, and the deep convolutional neural networks employed could classify the 26 letters to an accuracy of 94%. To overcome the deficiency of the measured data and improve the classification accuracy, transfer learning was introduced. Using the VGG-16 model, its accuracy was improved up to 97%. Additional experiments were conducted to ascertain the radar's capability to detect the human voice through a barrier between the human and the radar. In this paper, we demonstrated the possibility of remote voice recognition using Doppler information, with or without a barrier. © 2019 IEEE. -
dc.language English -
dc.publisher Institute of Electrical and Electronics Engineers -
dc.title Through-Wall Remote Human Voice Recognition Using Doppler Radar With Transfer Learning -
dc.type Article -
dc.identifier.doi 10.1109/JSEN.2019.2901271 -
dc.identifier.wosid 000468238700026 -
dc.identifier.scopusid 2-s2.0-85065890437 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.identifier.bibliographicCitation Khanna, Rohan. (2019-06). Through-Wall Remote Human Voice Recognition Using Doppler Radar With Transfer Learning. doi: 10.1109/JSEN.2019.2901271 -
dc.description.journalClass 1 -
dc.contributor.nonIdAuthor Khanna, Rohan -
dc.contributor.nonIdAuthor Kim, Youngwook -
dc.identifier.citationVolume 19 -
dc.identifier.citationNumber 12 -
dc.identifier.citationStartPage 4571 -
dc.identifier.citationEndPage 4576 -
dc.identifier.citationTitle IEEE Sensors Journal -
dc.type.journalArticle Article -
dc.description.isOpenAccess N -
dc.subject.keywordAuthor Human voice recognition -
dc.subject.keywordAuthor micro-Doppler signatures -
dc.subject.keywordAuthor deep learning -
dc.subject.keywordAuthor convolutional neural network -
dc.subject.keywordAuthor transfer learning -
dc.subject.keywordAuthor AlexNet -
dc.subject.keywordAuthor VGG-16 -
dc.subject.keywordPlus Convolution -
dc.subject.keywordPlus Deep learning -
dc.subject.keywordPlus Deep neural networks -
dc.subject.keywordPlus Doppler radar -
dc.subject.keywordPlus Neural networks -
dc.subject.keywordPlus AlexNet -
dc.subject.keywordPlus Convolutional neural network -
dc.subject.keywordPlus Human voice recognition -
dc.subject.keywordPlus Micro-Doppler -
dc.subject.keywordPlus Transfer learning -
dc.subject.keywordPlus VGG-16 -
dc.subject.keywordPlus Speech recognition -
dc.contributor.affiliatedAuthor Oh, Daegun -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

오대건
Oh, Daegun오대건

Division of Intelligent Robotics

read more

Total Views & Downloads