Showing results 1 to 5 of 5
-
Nam, Ju Gang
;
-
Kim, J.
;
-
Noh, K.
;
-
Yang, H.-L.
;
-
Choi, Hyewon
;
-
Kim, Da Som
;
-
Yoo, Seung-Jin
;
-
Hwang, Eui Jin
;
-
Goo, Jin Mo
;
-
Park, Eun-Ah
;
et al
- 2021-11
- Nam, Ju Gang. (2021-11). Automatic prediction of left cardiac chamber enlargement from chest radiographs using convolutional neural network. European Radiology, 31(11), 8130–8140. doi: 10.1007/s00330-021-07963-1
- Springer Verlag
- View : 329
- Download : 0
-
Wang, Chonghe
;
-
Qi, Baiyan
;
-
Lin, Muyang
;
-
Zhang, Zhuorui
;
-
Makihata, Mitsutoshi
;
-
Liu, Boyu
;
-
Zhou, Sai
;
-
Huang, Yi-hsi
;
-
Hu, Hongjie
;
-
Gu, Yue
;
et al
- 2021-07
- Wang, Chonghe. (2021-07). Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nature Biomedical Engineering, 5(7), 749–758. doi: 10.1038/s41551-021-00763-4
- Nature Publishing Group
- View : 526
- Download : 0
-
Lee, Sun Key
;
-
Lee, Seung Min
;
-
Kim, Sangwon
;
-
Yoon, Chang-Hwan
;
-
Park, Hun-Jun
;
-
Kim, Jin Young
;
-
Choi, Hong Soo
- 2018-02
- Lee, Sun Key. (2018-02). Fabrication and Characterization of a Magnetic Drilling Actuator for Navigation in a Three-dimensional Phantom Vascular Network. Scientific Reports, 8(1). doi: 10.1038/s41598-018-22110-5
- Nature Publishing Group
- View : 927
- Download : 127
-
Jung, Hanbeen
;
-
Yeo, Chaebeom
;
-
Jang, Eunsil
;
-
Chang, Yeonhee
;
-
Song, Cheol
- 2024-12
- Jung, Hanbeen. (2024-12). Machine-learning-based diabetes classification method using blood flow oscillations and Pearson correlation analysis of feature importance. Machine Learning: Science and Technology, 5(4). doi: 10.1088/2632-2153/ad861d
- IOP Publishing
- View : 148
- Download : 27
-
Kim, Hyewon
;
-
Kim, Yuwon
;
-
Myung, Woojae
;
-
Fava, Maurizio
;
-
Mischoulon, David
;
-
Lee, Unjoo
;
-
Lee, Hyosang
;
-
Na, Eun Jin
;
-
Choi, Kwan Woo
;
-
Shin, Myung-Hee
;
et al
- 2020-03
- Kim, Hyewon. (2020-03). Risks of suicide attempts after prescription of zolpidem in people with depression: A nationwide population study in South Korea. doi: 10.1093/sleep/zsz235
- The American Academy of Sleep Medicine
- View : 819
- Download : 0
1