Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Park, Jongeon -
dc.contributor.author Jin, Chae-won -
dc.contributor.author Lee, Seungmin -
dc.contributor.author Kim, Jin-Young -
dc.contributor.author Choi, Hongsoo -
dc.date.accessioned 2019-08-14T02:03:35Z -
dc.date.available 2019-08-14T02:03:35Z -
dc.date.created 2019-07-25 -
dc.date.issued 2019-08 -
dc.identifier.issn 2192-2640 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/10379 -
dc.description.abstract Microrobots facilitate targeted therapy due to their small size, minimal invasiveness, and precise wireless control. A degradable hyperthermia microrobot (DHM) with a 3D helical structure is developed, enabling actively controlled drug delivery, release, and hyperthermia therapy. The microrobot is made of poly(ethylene glycol) diacrylate (PEGDA) and pentaerythritol triacrylate (PETA) and contains magnetic Fe3O4 nanoparticles (MNPs) and 5-fluorouracil (5-FU). Its locomotion is remotely and precisely controlled by a rotating magnetic field (RMF) generated by an electromagnetic actuation system. Drug-free DHMs reduce the viability of cancer cells by elevating the temperature under an alternating magnetic field (AMF), a hyperthermic effect. 5-FU is released from the proposed DHMs in normal-, high-burst-, and constant-release modes, controlled by the AMF. Finally, actively controlled drug release from the DHMs in normal- and high-burst-release mode results in a reduction in cell viability. The reduction in cell viability is of greater magnitude in high-burst- than in normal-release mode. In summary, biodegradable DHMs have potential for actively controlled drug release and hyperthermia therapy. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim -
dc.language English -
dc.publisher John Wiley and Sons Ltd -
dc.title Magnetically Actuated Degradable Microrobots for Actively Controlled Drug Release and Hyperthermia Therapy -
dc.type Article -
dc.identifier.doi 10.1002/adhm.201900213 -
dc.identifier.wosid 000477114300001 -
dc.identifier.scopusid 2-s2.0-85068756137 -
dc.identifier.bibliographicCitation Advanced Healthcare Materials, v.8, no.16, pp.1900213 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor magnetic actuation -
dc.subject.keywordAuthor controlled release -
dc.subject.keywordAuthor degradable composites -
dc.subject.keywordAuthor targeted delivery -
dc.subject.keywordAuthor two-photon polymerization -
dc.subject.keywordPlus IRON-OXIDE NANOPARTICLES -
dc.subject.keywordPlus POLY(ETHYLENE GLYCOL) -
dc.subject.keywordPlus COMPOSITE NANOPARTICLES -
dc.subject.keywordPlus DELIVERY -
dc.subject.keywordPlus SYSTEMS -
dc.subject.keywordPlus 5-FLUOROURACIL -
dc.subject.keywordPlus FABRICATION -
dc.subject.keywordPlus HYDROGELS -
dc.subject.keywordPlus PROPERTY -
dc.subject.keywordPlus SIZE -
dc.citation.number 16 -
dc.citation.startPage 1900213 -
dc.citation.title Advanced Healthcare Materials -
dc.citation.volume 8 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Engineering; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Engineering, Biomedical; Nanoscience & Nanotechnology; Materials Science, Biomaterials -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Robotics and Mechatronics Engineering Bio-Micro Robotics Lab 1. Journal Articles
Division of Biotechnology 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE