Full metadata record

DC Field Value Language
dc.contributor.advisor최지환-
dc.contributor.authorJun Hee Kim-
dc.contributor.other김준희-
dc.contributor.other이두석-
dc.contributor.otherJihwan P. Choi-
dc.date.accessioned2020-06-22T16:03:50Z-
dc.date.available2020-06-22T16:03:50Z-
dc.date.issued2020-
dc.identifier.urihttp://dgist.dcollection.net/common/orgView/200000281760en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11750/12023-
dc.descriptionDeep learning, wireless cognitive radio networks, spectrum detection, semantic segmentation-
dc.description.abstractMachine-learning algorithms have attracted much attention in a wide range of areas. Because machine-learning algorithms can extract patterns from data automatically, it is possible to model the input-output function of a system using a machine-learning algorithm. In cognitive radio networks, machine-learning-based spectrum sensing schemes depend on the positioning of the nodes. During building extraction tasks based on high-resolution aerial images, large-scale datasets are required, with customized architecture necessary to process the datasets. Moreover, when there is a domain gap between the training and test data, trained models fail to segment objects for unseen images. In this Theses, the challenges facing machine-learning-based systems and solutions are discussed. The first application is for spectrum sensing in cognitive radio networks. The hidden primary user (PU) problem, however, is a critical issue in cognitive radio networks because spectrum sensing nodes (SNs) can misclassify the degree of spectrum occupancy. To cope with this, machine-learning-based cooperative spectrum sensing schemes (CSSs) have been proposed. CSSs that do not consider node placement, however, continue to be affected by the hidden PU problem. In this paper, we present a method by which to place SNs to guarantee the performance of machine-learning-based CSSs. We verify that the hidden PU problem causes some overlap in the data distribution, which deteriorates of the spectrum sensing ability. Based on Kullback-Leibler divergence, analytical expressions for the spectrum-sensing coverage of a single SN are derived. We then propose a strategy for placing a few SNs to cover the entire area of the PU and prove the feasibility of the proposed method experimentally. The second application is related to deep-learning architecture for semantic segmentation from high-resolution aerial images. Extracting manufactured features such as buildings, roads, and water from aerial images is critical for urban planning, traffic management, and industrial development. Recently, convolutional neural networks (CNNs) have become a popular strategy to use to capture contextual features automatically. We design a multi-object segmentation system and propose an algorithm that utilizes pyramid pooling layers to improve U-Net. Test results indicate that U-Net with pyramid pooling layers, referred to as UNetPPL, learns fine-grained classification maps and outperforms other algorithms, specifically FCN and U-Net, achieving a mean intersection of union (mIOU) value of 79.52 and pixel accuracy of 87.61% for four types of objects (buildings, roads, water, and background). The final application is domain adaptation for building extraction. CNN-based semantic segmentation models garnered much attention in relation to remote sensing and achieved remarkable performance during the extraction of buildings from high -resolution aerial images. However, limited generalization for unseen images remains. When there is a domain gap between the training and test datasets, CNN-based segmentation models that are trained using a training dataset fail to segment buildings in the test dataset. In this paper, we propose domain-adaptive transfer attack (DATA)-based segmentation networks for building extraction from aerial images. The proposed system utilizes jointly both domain transfers and adversarial attacks. Based on the DATA scheme, the distribution of input images can be shifted to that of target images while maintaining the semantic spaces. This reduces the domain gap and expands the generalization of the segmentation model. From test results with two different datasets (i.e., the Inria aerial image labeling dataset and the Massachusetts building dataset), it is verified that the performance when extracting buildings is improved to 0.16% and 7.12%, respectively.-
dc.description.statementofresponsibilityopen-
dc.description.tableofcontentsAbstract i List of contents iv List of figures vii List of tables viii 1. INTRODUCTION 1 1.1 MACHINE LEARNING ALGORITHM 1 1.2 BACKGROUND AND CHALLENGING ISSUES 1 1.2.1 COGNITIVE RADIO NETWORKS 1 1.2.2 SEMANTIC SEGMENTATION FROM HIGH-RESOLUTION AERIAL IMAGE 2 1.2.3 DOMAIN GAP BETWEEN TRAINING AND TEST DATASET 3 1.3 OVERVIEW OF Theses 3 2. SENSING COVERAGE-BASED SPECTRUM DETECTION 4 2.1 INTRODUCTION 4 2.1.1 RELATED WORK 5 2.1.2 SUMMARY AND ORGANIZATION 7 2.2 SYSTEM MODEL AND PROBLEM FORMULATION 7 2.2.1 SYSTEM MODEL OF COGNITIVE RADIO NETWORKS 7 2.2.2 MACHINE LEARNING-BASED COOPERATIVE SPECTRUM SENSING 9 2.2.3 HIDDEN PU PROBLEM AND KULLBACK-LEIBLER DIVERGENCE 11 2.3 ANALYSIS OF THE MAXIMUM DISTANCE 14 2.3.1 MAXIMUM DISTANCE BETWEEN SN AND PU 14 2.3.2 COVERAGE AREA 15 2.3.3 OUTAGE PROBABILITY FOR THE MAXIMUM DISTANCE 16 2.3.4 POSITIONING OF SPECTRUM SENSING NODES 18 2.4 EXPERIMENT SETUP AND RESULTS 19 2.5 CONCLUSION 24 3. SEMANTIC SEGMENTATION FOR GEO DATA GENERATION 26 3.1 INTRODUCTION 26 3.2 DEEP LEARNING-BASED OBJECT SEGMENTATION SYSTEMS 28 3.2.1 FULLY CONVOLUTIONAL NETWORKS 28 3.2.2 U-NET 29 3.3 U-NET WITH PYRAMID POOLING LAYERS 30 3.4 DATASET AND EXPERIMENTS 31 3.4.1 DATASET 33 3.4.2 TRAINING SETUP 34 3.5 RESULTS AND DISCUSION 36 3.6 CONCLUSION 39 4. DOMAIN ADAPTATION FOR AERIAL IMAGES 41 4.1 INTRODUCTION 41 4.2 DEEP LEARNING-BASED SEMANTIC SEGMENTATION 43 4.2.1 SEMANTIC SEGMENTATION SYSTEMS 44 4.2.2 INRIA AERIAL IMAGE LABELING DATASET 44 4.2.3 TRAINING SETUP 45 4.2.4 TEST RESULTS AND COMPARISION WITH OTHER ARCHITECTURES 47 4.3 DOMAIN GAP AND SEGMENTATION PERFORMANCE 58 4.3.1 MASSACHUSETTS BUILDING DATASET 58 4.4 DOMAIN ADAPTIVE TRANSFER ATTACK 59 4.4.1 OVERVIEW OF THE PROPOSED MODEL 60 4.4.2 OBJECTIVE FUNCTION FOR DOMAIN ADAPTATION 62 4.4.3 OBJECTIVE FUNCTION FOR ADVERSARIAL ATTACK 62 4.4.4 OBJECTIVE FUNCTION FOR DISCRIMINATOR 63 4.4.5 TRAINING ADVERSARIAL ATTACK MODEL & DISCRIMINATOR 64 4.5 DATA-BASED ADVERSARIAL TRAINING & RESULTS 66 4.5.1 ADVERSARY TRAINING SETUP 66 4.5.2 TEST RESULTS FOR ADVERSARY TRAINING 67 4.6 CONCLUSION 70 5. CONCLUSION REMARKS 71 REFERENCES 73-
dc.format.extent92-
dc.languageeng-
dc.publisherDGIST-
dc.source/home/dspace/dspace53/upload/200000281760.pdf-
dc.titleMACHINE LEARNING-BASED SYSTEM MODELING FOR SPECTRUM SENSING & SEMANTIC SEGMENTATION-
dc.title.alternative기계학습 알고리즘을 이용한 스펙트럼 검출 및 영항분할 시스템 설계-
dc.typeThesis-
dc.identifier.doi10.22677/Theses.200000281760-
dc.description.alternativeAbstract기계학습 알고리즘은 데이터로부터 자동으로 패턴을 추출하는 과정으로 정의된다. 이러한 기계학습 알고리즘의 자동특징추출과정은 입력 및 출력에 대한 시스템이 모델링 되어 있지 않은 분야에서 입/출력 함수를 근사하는 방법으로써 뇌종양 진단을 위한 의료영상처리, 채널추정, 스펙트럼 검출, 항공영상처리 등 많은 분야에서 사용되고 있다. 하지만 기계학습 알고리즘을 적용하더라도 반드시 주어진 문제를 해결할 수 있는 것은 아니다. 인지 무선 네트워크에서 스펙트럼을 검출하기 위한 분류기는 스펙트럼 감지 노드들의 배치에 의존적이며 항공 이미지를 가공하는 분야에서는 주어진 데이터를 처리하는데 적합한 기계학습 알고리즘 구조를 설계해야한다. 본 논문은 주어진 문제를 기계학습 알고리즘을 이용하여 해결한 연구 사례 및 기존 딥러닝 알고리즘의 성능을 개선한 연구 사례를 제시한다. 첫 번째 적용 분야는 인지 무선 통신 기술 분야이다. 무선통신기술이 발달함에 따라 특정 주파수 대역은 포화가 되는 반면 수요가 적은 스펙트럼 대역은 제대로 활용되지 않는 상태이며 이러한 스펙트럼 불균형 문제를 해결하기 위한 방안으로 인지무선통신기술이 제안되었다. 인지무선통신에서 비면허 유저가 면허 유저에게 할당된 스펙트럼을 기회적으로 접속하기 위해 스펙트럼 감지기법이 요구되며 최근 들어 기계학습 알고리즘 기반의 스펙트럼 감지기법이 연구되고 있다. 또한 비면허 유저가 면허 유저의 스펙트럼 점유상태를 오판할 수 있는 은닉유저문제를 해결하기 위해 협력검출기법이 제안되었다. 하지만 협력검출기법을 적용하는데 있어서 여러 환경변수가 존재하며 기존의 연구에서는 이를 고려하지 않으며 기계학습기반 스펙트럼 검출기법 성능과 은닉유저문제 간 관계를 분석하여 은닉유저문제를 해결하기 위한 협력검출기법의 조건을 제시하고 시뮬레이션과 실험결과를 통해 이를 검증하였다. 두 번째 적용 분야는 딥러닝 알고리즘을 이용한 영상분할 시스템 설계이다. 인공위성 이미지는 도시계획, 교통량 관리 등 여러 분야에서 활용된다. 하지만 인공위성 이미지를 활용하기 위해서는 건물, 도로, 수로 등 인공물을 추출하는 과정이 요구된다. 최근 들어, 딥러닝 알고리즘을 이용하여 이미지로부터 특징을 추출하는 연구가 진행되었으며 그 성능이 뛰어남을 입증하였다. 하지만 딥러닝 알고리즘의 성능은 딥러닝 구조에 의존적이므로 목적에 맞는 구조를 설계해야한다. 따라서, 딥러닝 학습을 위한 많은 양의 학습데이터를 제작하였으며 지리정보생성 시스템의 목적에 맞게 딥러닝 구조를 설계하였다. 제안된 시스템은 겹침공간을 기준으로 다른 딥러닝 구조와 비교하여 그 성능이 뛰어남을 입증하였다. 세 번째 적용 분야는 영상분할 시스템의 일반화 능력을 향상시키기 위한 도메인 적응 분야이다. 일반적으로 딥러닝 알고리즘은 주어진 학습데이터와 유사한 테스트 데이터에 대해서는 뛰어난 성능을 보여주지만 학습데이터와 유사하지 않은 테스트 데이터에 대해서는 성능이 상당히 저하되게 된다. 이러한 현상은 도메인 격차로 발생하게 되며 이를 해결하기 위해 도메인 적응형 적대적 공격 기법 (Domain Adaptive Transfer Attack, DATA)을 제안하였다. 제안한 기법은 메사추세츠 건물 데이터를 이용하여 그 효과를 입증하였다.-
dc.description.degreeDoctor-
dc.contributor.departmentInformation and Communication Engineering-
dc.contributor.localauthorKim, Jun Hee-
dc.contributor.localauthorLee, Dooseok-
dc.contributor.localauthorChoi, Jihwan P.-
dc.contributor.coadvisorDooseok Lee-
dc.date.awarded2020-02-
dc.publisher.locationDaegu-
dc.description.databasedCollection-
dc.citationXT.ID 김76 202002-
dc.date.accepted2020-01-20-
dc.contributor.alternativeDepartment정보통신융합전공-


qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE