Detail View

대용량 이미지넷 인식을 위한 CNN 기반 Weighted 앙상블 기법
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author 정희철 ko
dc.contributor.author 최민국 ko
dc.contributor.author 김준광 ko
dc.contributor.author 권순 ko
dc.contributor.author 정우영 ko
dc.date.accessioned 2021-01-22T07:24:38Z -
dc.date.available 2021-01-22T07:24:38Z -
dc.date.created 2020-09-11 -
dc.date.issued 2020-08 -
dc.identifier.citation 대한임베디드공학회논문지, v.15, no.4, pp.197 - 204 -
dc.identifier.issn 1975-5066 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/12761 -
dc.description.abstract The ImageNet dataset is a large scale dataset and contains various natural scene images. In this paper, we propose a convolutional neural network (CNN)-based weighted ensemble technique for the ImageNet classification task. First, in order to fuse several models, our technique uses weights for each model, unlike the existing average-based ensemble technique. Then we propose an algorithm that automatically finds the coefficients used in later ensemble process. Our algorithm sequentially selects the model with the best performance of the validation set, and then obtains a weight that improves performance when combined with existing selected models. We applied the proposed algorithm to a total of 13 heterogeneous models, and as a result, 5 models were selected. These selected models were combined with weights, and we achieved 3.297% Top-5 error rate on the ImageNet test dataset. -
dc.language Korean -
dc.publisher 대한임베디드공학회 -
dc.title 대용량 이미지넷 인식을 위한 CNN 기반 Weighted 앙상블 기법 -
dc.title.alternative CNN-based Weighted Ensemble Technique for ImageNet Classification -
dc.type Article -
dc.identifier.doi 10.14372/IEMEK.2020.15.4.197 -
dc.type.local Article(Domestic) -
dc.type.rims ART -
dc.identifier.bibliographicCitation 정희철. (2020-08). 대용량 이미지넷 인식을 위한 CNN 기반 Weighted 앙상블 기법. doi: 10.14372/IEMEK.2020.15.4.197 -
dc.description.journalClass 2 -
dc.identifier.kciid ART002618602 -
dc.identifier.citationVolume 15 -
dc.identifier.citationNumber 4 -
dc.identifier.citationStartPage 197 -
dc.identifier.citationEndPage 204 -
dc.identifier.citationTitle 대한임베디드공학회논문지 -
dc.description.isOpenAccess N -
dc.subject.keywordAuthor Deep learning -
dc.subject.keywordAuthor ImageNet -
dc.subject.keywordAuthor ILSVRC -
dc.subject.keywordAuthor Data augmentation -
dc.subject.keywordAuthor Ensemble -
dc.subject.keywordAuthor Weighted ensemble -
dc.subject.keywordAuthor Image classification -
dc.contributor.affiliatedAuthor 최민국 -
dc.contributor.affiliatedAuthor 김준광 -
dc.contributor.affiliatedAuthor 권순 -
dc.contributor.affiliatedAuthor 정우영 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

권순
Kwon, Soon권순

Division of Mobility Technology

read more

Total Views & Downloads