Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor Son, Sang Hyuk -
dc.contributor.author Jo, Min Su -
dc.date.accessioned 2017-05-10T08:54:06Z -
dc.date.available 2017-01-18T00:00:00Z -
dc.date.issued 2017 -
dc.identifier.uri http://dgist.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002322990 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/1522 -
dc.description.abstract Modern Cyber-physical Systems (CPS) in the automobile industry are equipped with various sensors to provide the safety and the convenience such as the obstacle detection and the adaptive cruise control. However, those systems could be vulnerable to sensor attacks (e.g., GPS spoofing) and the malicious sensory data causes the system to be in the danger. Therefore, the robustness and resilience against the abnormal conditions is essential to improve the safety of the system. To achieve the robustness and resiliency, multiple sensors measuring the same physical (i.e., redundancy) can be used. Sensory data obtained from the multiple sensors is fused using various sensor fusion models to detect and identify the malicious sensor data. In this thesis, sensor fault/attack detection methods are elaborated, which can be classified into two types: Hardware redundant method and analytical redundant method. The hardware redundant method is based on the sensor data obtained from multiple sensors. It has the advantage that doesn’t require the process of modeling. However, using multiple sensors causes the high cost and the limitation of the space to be implemented. In contrast, the analytical redundant method is based on the model of the system. It doesn’t require the several sensors. However, modeling a system is complicated and if the modeling has the error, it could result in the false alarm during the fault evaluation. In this thesis, we first focus on the hardware redundant method using several sensors measuring the same physical value. Then, we also handle the analytical redundant method by modeling the unmanned ground vehicle. ⓒ 2017 DGIST -
dc.description.tableofcontents I.Introduction 1--
II.Adaptive Transient Fault Model for Sensor Attack Detection 2--
2.1 Problem Formulation and Preliminaries 4--
2.1.1 Abstract Sensor Model 4--
2.1.2 Attack Detection with the Transient Fault Model 5--
2.1.3 Motivation and Example 7--
2.2 Adaptive Transient Fault Model 9--
2.2.1 Detection Scheme with Adaptive Transient Model 10--
2.2.2 Automating the Transient Fault modeling Process 10--
2.3 Case Study 12--
2.3.1 Jackal Robot System Description 12--
2.3.2 Lookup Table 13--
2.3.3 Evaluation on Motivating Example 14--
2.3.4Further Evaluation 17--
2.4 Conclusion 19--
IV.Performance Analysis of Sensor Fusion Models for Pedal System in Brake-by-Wire System 20--
3.1 EMB System and Sensor Fusion Model 21--
3.1.1 Electromechanical Brake (EMB) Systems 22--
3.1.2 Sensor Fusion Techniques 23--
3.2 Sensor Fusion Model 23--
3.2.1 Naïve Averaging Method 24--
3.2.2 Moving Averaging Method 24--
3.2.3 Marzullo’s algorithm 25--
3.2.4 Median Filter 26--
3.2.5 Iterative Filter 26--
3.3 Case Study 27--
3.3.1 System Description 27--
3.3.2 Curve Fitting Problem 29--
3.3.3 Performance Evaluation: Sensor fusion 32--
3.3.4 Hybrid method using Median and Marzullo algorithm 36--
3.3.5 Motor control using CANoe 36--
3.3.6 Performance Evaluation: Clamping force 37--
3.4 Conclusion 39--
III.Hybrid Diagnosis System in the Presence of the Transient Faults 40--
4.1 Problem Formulation and Proposed Method 42--
4.1.1 Motivation and Problem Statements 42--
4.1.2 Proposed System with A-TFM 43--
4.1.3 Kalman-based Approach for Fault Diagnosis 44--
4.1.4 Approach of Adaptive Transient Fault Model (A-TFM) 45--
4.2 Case Study 47--
4.2.1 Jackal Modeling 47--
4.2.2 A-TFM for Proposed System 49--
4.2.3 Comparison and Evalution 50--
4.3 Conclusion 54--
V. Conclusion and Future Work 54--
References 55
-
dc.format.extent 66 -
dc.language eng -
dc.publisher DGIST -
dc.subject Robustness -
dc.subject Sensor fusion -
dc.subject Sensor attack -
dc.subject Attack detection -
dc.subject Hardware redundant method -
dc.subject Analytical redundant method -
dc.subject 오류 및 공격 검출 -
dc.subject 강인성 -
dc.subject 고 신뢰성 -
dc.title Toward High Robustness and Resiliency using Fault/Attack Detection -
dc.title.alternative 오류 및 공격 검출을 통한 강인성 과 고 신뢰성 획득 -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.2322990 -
dc.description.alternativeAbstract 최근 사이버 물리 시스템이 다양한 분야에서 활용됨에 따라, 많은 시스템이 다양한 센서를 탑재하고 있다.이는 운전자에게 다양한 정보와 편의성을 제공하는 반면,이를 악용하여 악의적인 공격이 이루어질 수 있다.이러한 공격을 대비하여 시스템의 안정성을 높이기 위해 많은 연구자들이 오류 및 공격 검출 방법을 제시하였고 이러한 방법은 크게 Hardware redundant 방법과, Analytical Redundant 방법으로 구분할 수 있다. Hardware redundant 방법은 다양한 동종 혹은 이종 센서를 사용하여 센서 기반의 오류 검출 방법이다.하지만,센서를 탑재할 공간과 비용 문제로 적은 센서와 수학적인 모델링을 통한 Analytical redundant 방법을 선호하는 연구자들이 늘고 있다.본 논문에서는 두 방법을 모두 다루며 첫 번째 섹션에서는 순간적인 오류를 고려한 공격 검출 방법을 제시하면서 차량 플랫폼의 GPS 와 Encoder 센서를 이용해 속도를 측정하여 실험하였다.두 번째 섹션에서는 전자식브레이크에서 페달 센서와 답력 센서를 이용하여 다양한 센서 퓨전 모델 (Average Moving average, Median, Iterative filter, Marzullo filter)의 성능을 실험하였다.세 번째 섹션은 앞의 두 섹션과는 다르게 자동차 플랫폼의 모델링과 Encoder 센서를 이용한 Analytical redundant 방법을 다룬다. 제안한 방법의 성능을 평가하기 위해 실제 차량 플랫폼과 자동차 페달 센서를 이용하여 실험을 하였고,기존의 방법보다 더 나은 강인성과 고 신뢰성을 보여주었다. ⓒ 2017 DGIST -
dc.description.degree Master -
dc.contributor.department Information and Communication Engineering -
dc.contributor.coadvisor Lee, Seong Hun -
dc.date.awarded 2017. 2 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.date.accepted 2017-01-18 -
dc.contributor.alternativeDepartment 대학원 정보통신융합공학전공 -
dc.contributor.affiliatedAuthor Jo, Min Su -
dc.contributor.affiliatedAuthor Son, Sang Hyuk -
dc.contributor.affiliatedAuthor Lee, Seong Hun -
dc.contributor.alternativeName 조민수 -
dc.contributor.alternativeName 손상혁 -
dc.contributor.alternativeName 이성훈 -
Files in This Item:
000002322990.pdf

000002322990.pdf

기타 데이터 / 2.77 MB / Adobe PDF download
Appears in Collections:
Department of Electrical Engineering and Computer Science Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE