Cited 1 time in webofscience Cited 2 time in scopus

Differential interaction of Beta2e with phosphoinositides: A comparative study between Beta2e and MARCKS

Differential interaction of Beta2e with phosphoinositides: A comparative study between Beta2e and MARCKS
Kim, DI[Kim, Dong-Il]Suh, BC[Suh, Byung-Chang]
DGIST Authors
Kim, DI[Kim, Dong-Il]; Suh, BC[Suh, Byung-Chang]
Issue Date
Channels, 10(3), 238-246
Article Type
Beta2e SubunitBinding AffinityCell MembraneConfocal Laser Scanning MicroscopyControlled StudyElectrostatic InteractionEnzyme ActivityHumanHuman CellMarcks ProteinMyristoylated Alanine-Rich C Kinase Substrate (MARCKS)MyristylationPhosphatidylinositidePhosphatidylinositide Beta 2E SubunitPhosphatidylinositol 3,4,5 Trisphosphate 3 PhosphatasePhosphatidylinositol 4,5-Bisphosphate (PIP2)Phosphatidylinositol 4,5 BisphosphatePolymerase Chain ReactionProtein InteractionProtein Kinase C (PKC)Protein LocalizationProtein TranslocaseSignal TransductionStatic ElectricityUnclassified DrugVoltage-Gated Calcium Channel
Voltage-gated calcium (CaV) channels are responsible for Ca2+ influx in excitable cells. As one of the auxiliary subunits, the CaV β subunit plays a pivotal role in the membrane expression and receptor modulation of CaV channels. In particular, the subcellular localization of the β subunit is critical for determining the biophysical properties of CaV channels. Recently, we showed that the β2e isotype is tethered to the plasma membrane. Such a feature of β2e is due to the reversible electrostatic interaction with anionic membrane phospholipids. Here, we further explored the membrane interaction property of β2e by comparing it with that of myristoylated alanine-rich C kinase substrate (MARCKS). First, the charge neutralization of the inner leaf of the plasma membrane induced the translocation of both β2e and MARCKS to the cytosol, while the transient depletion of poly-phosphoinositides (poly-PIs) by translocatable pseudojanin (PJ) systems induced the cytosolic translocation of β2e but not MARCKS. Second, the activation of protein kinase C (PKC) induced the translocation of MARCKS but not β2e. We also found that after the cytosolic translocation of MARCKS by receptor activation, depletion of poly-PIs slowed the recovery of MARCKS to the plasma membrane. Together, our data demonstrate that both β2e and MARCKS bind to the membrane through electrostatic interaction but with different binding affinity, and thus, they are differentially regulated by enzymatic degradation of membrane PIs. © 2016 Taylor & Francis.
Taylor and Francis Inc.
Related Researcher
  • Author Suh, Byung Chang Current Lab
  • Research Interests Molecular mechanisms of epilepsy and sensory pain transmission; Signaling mechanism of ion channel regulation and membrane excitability; 분자전기생리; 간질 및 통증의 분자적 기전 연구
There are no files associated with this item.
Department of Brain and Cognitive SciencesCurrent Lab1. Journal Articles

qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.