Detail View

New Class of Titanium Niobium Oxide for a Li-Ion Host: TiNbO4 with Purely Single-Phase Lithium Intercalation
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
New Class of Titanium Niobium Oxide for a Li-Ion Host: TiNbO4 with Purely Single-Phase Lithium Intercalation
Issued Date
2022-01
Citation
Lee, Jeongmin. (2022-01). New Class of Titanium Niobium Oxide for a Li-Ion Host: TiNbO4 with Purely Single-Phase Lithium Intercalation. Chemistry of Materials, 34(2), 854–863. doi: 10.1021/acs.chemmater.1c03960
Type
Article
Keywords
ANODE MATERIALSENERGY-STORAGEPERFORMANCEELECTRODEBATTERIESFRAMEWORKKINETICSBEHAVIORRUTILETIO2
ISSN
0897-4756
Abstract
Entropy-stabilized titanium niobium oxides (TNOs) with crystallographic shear structures (e.g., TiNb2O7 and Ti2Nb10O29) are generally synthesized by high-temperature calcination in an air or an oxygen atmosphere to compensate for their positive enthalpies of formation. In this work, we demonstrate that changing the reaction atmosphere into a slightly reductive environment using in situ carbonization leads to the creation of a new class of TNO with a formula of TiNbO4. Unlike its predecessors, this new lithium reservoir is a rutile phase, and most strikingly, in situ X-ray diffraction analysis revealed that its lithium intercalation occurs via a purely solid-solution process. Since solid-electrolyte-interface-free, high capacity anode materials with long cyclic life are required to meet the stringent requirements of widespread lithium-ion battery utilization, this finding of a new electrode material with purely single-phase lithium intercalation is of great interest for the development of high-performance anode materials. Distinctive electrochemical behavior that is different from that of crystallographic shear structured TNO is revealed by in-depth electrochemical analyses, which is ascribed to the unique structural and electronic properties of TiNbO4. We believe this work opens a new avenue for the development of feasible oxide-based alternatives to graphite, which can be safer and suitable for high-power performance. © 2022 American Chemical Society.
URI
http://hdl.handle.net/20.500.11750/16212
DOI
10.1021/acs.chemmater.1c03960
Publisher
American Chemical Society
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

홍승태
Hong, Seung-Tae홍승태

Department of Energy Science and Engineering

read more

Total Views & Downloads