Detail View

A Unified Understanding of the Thickness-Dependent Bandgap Transition in Hexagonal Two-Dimensional Semiconductors
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Kang, Joongoo -
dc.contributor.author Zhang, Lijun -
dc.contributor.author Wei, Su-Huai -
dc.date.available 2017-07-11T04:38:58Z -
dc.date.created 2017-04-10 -
dc.date.issued 2016-02-18 -
dc.identifier.issn 1948-7185 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2550 -
dc.description.abstract Many important layered semiconductors, such as hexagonal boron nitride (hBN) and transition-metal dichalcogenides (TMDs), are derived from a hexagonal lattice. A single layer of such hexagonal semiconductors generally has a direct bandgap at the high-symmetry point K, whereas it becomes an indirect, optically inactive semiconductor as the number of layers increases to two or more. Here, taking hBN and MoS2 as examples, we reveal the microscopic origin of the direct-to-indirect bandgap transition of hexagonal layered materials. Our symmetry analysis and first-principles calculations show that the bandgap transition arises from the lack of the interlayer orbital couplings for the band-edge states at K, which are inherently weak because of the crystal symmetries of hexagonal layered materials. Therefore, it is necessary to judiciously break the underlying crystal symmetries to design more optically active, multilayered semiconductors from hBN or TMDs. © 2016 American Chemical Society. -
dc.publisher American Chemical Society -
dc.title A Unified Understanding of the Thickness-Dependent Bandgap Transition in Hexagonal Two-Dimensional Semiconductors -
dc.type Article -
dc.identifier.doi 10.1021/acs.jpclett.5b02687 -
dc.identifier.scopusid 2-s2.0-84958999261 -
dc.identifier.bibliographicCitation Kang, Joongoo. (2016-02-18). A Unified Understanding of the Thickness-Dependent Bandgap Transition in Hexagonal Two-Dimensional Semiconductors. Journal of Physical Chemistry Letters, 7(4), 597–602. doi: 10.1021/acs.jpclett.5b02687 -
dc.subject.keywordPlus AUGMENTED-WAVE METHOD -
dc.subject.keywordPlus Bandgap Transition -
dc.subject.keywordPlus Calculations -
dc.subject.keywordPlus Crystal Symmetry -
dc.subject.keywordPlus DER-WAALS HETEROSTRUCTURES -
dc.subject.keywordPlus Energy Gap -
dc.subject.keywordPlus First-Principles Calculation -
dc.subject.keywordPlus Hexagonal Boron Nitride (h-BN) -
dc.subject.keywordPlus Hexagonal Lattice -
dc.subject.keywordPlus High-Symmetry Points -
dc.subject.keywordPlus LAYER MOS2 -
dc.subject.keywordPlus Layered Semiconductors -
dc.subject.keywordPlus METAL DICHALCOGENIDES -
dc.subject.keywordPlus MONOLAYER MOS2 -
dc.subject.keywordPlus Symmetry Analysis -
dc.subject.keywordPlus Transition Metal Dichalcogenides -
dc.subject.keywordPlus Transition Metals -
dc.subject.keywordPlus Two-Dimensional Semiconductors -
dc.citation.endPage 602 -
dc.citation.number 4 -
dc.citation.startPage 597 -
dc.citation.title Journal of Physical Chemistry Letters -
dc.citation.volume 7 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

강준구
Kang, Joongoo강준구

Department of Physics and Chemistry

read more

Total Views & Downloads