Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kang, Joongoo | - |
dc.contributor.author | Zhang, Lijun | - |
dc.contributor.author | Wei, Su-Huai | - |
dc.date.available | 2017-07-11T04:38:58Z | - |
dc.date.created | 2017-04-10 | - |
dc.date.issued | 2016-02-18 | - |
dc.identifier.issn | 1948-7185 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.11750/2550 | - |
dc.description.abstract | Many important layered semiconductors, such as hexagonal boron nitride (hBN) and transition-metal dichalcogenides (TMDs), are derived from a hexagonal lattice. A single layer of such hexagonal semiconductors generally has a direct bandgap at the high-symmetry point K, whereas it becomes an indirect, optically inactive semiconductor as the number of layers increases to two or more. Here, taking hBN and MoS2 as examples, we reveal the microscopic origin of the direct-to-indirect bandgap transition of hexagonal layered materials. Our symmetry analysis and first-principles calculations show that the bandgap transition arises from the lack of the interlayer orbital couplings for the band-edge states at K, which are inherently weak because of the crystal symmetries of hexagonal layered materials. Therefore, it is necessary to judiciously break the underlying crystal symmetries to design more optically active, multilayered semiconductors from hBN or TMDs. © 2016 American Chemical Society. | - |
dc.publisher | American Chemical Society | - |
dc.title | A Unified Understanding of the Thickness-Dependent Bandgap Transition in Hexagonal Two-Dimensional Semiconductors | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acs.jpclett.5b02687 | - |
dc.identifier.scopusid | 2-s2.0-84958999261 | - |
dc.identifier.bibliographicCitation | Journal of Physical Chemistry Letters, v.7, no.4, pp.597 - 602 | - |
dc.subject.keywordPlus | AUGMENTED-WAVE METHOD | - |
dc.subject.keywordPlus | Bandgap Transition | - |
dc.subject.keywordPlus | Calculations | - |
dc.subject.keywordPlus | Crystal Symmetry | - |
dc.subject.keywordPlus | DER-WAALS HETEROSTRUCTURES | - |
dc.subject.keywordPlus | Energy Gap | - |
dc.subject.keywordPlus | First-Principles Calculation | - |
dc.subject.keywordPlus | Hexagonal Boron Nitride (h-BN) | - |
dc.subject.keywordPlus | Hexagonal Lattice | - |
dc.subject.keywordPlus | High-Symmetry Points | - |
dc.subject.keywordPlus | LAYER MOS2 | - |
dc.subject.keywordPlus | Layered Semiconductors | - |
dc.subject.keywordPlus | METAL DICHALCOGENIDES | - |
dc.subject.keywordPlus | MONOLAYER MOS2 | - |
dc.subject.keywordPlus | Symmetry Analysis | - |
dc.subject.keywordPlus | Transition Metal Dichalcogenides | - |
dc.subject.keywordPlus | Transition Metals | - |
dc.subject.keywordPlus | Two-Dimensional Semiconductors | - |
dc.citation.endPage | 602 | - |
dc.citation.number | 4 | - |
dc.citation.startPage | 597 | - |
dc.citation.title | Journal of Physical Chemistry Letters | - |
dc.citation.volume | 7 | - |
There are no files associated with this item.