Detail View

DeepPM: Transformer-based Power and Performance Prediction for Energy-Aware Software
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Shim, Jun S. -
dc.contributor.author Han, Bogyeong -
dc.contributor.author Kim, Yeseong -
dc.contributor.author Kim, Jihong -
dc.date.accessioned 2023-12-26T18:14:07Z -
dc.date.available 2023-12-26T18:14:07Z -
dc.date.created 2022-06-16 -
dc.date.issued 2022-03-23 -
dc.identifier.isbn 9783981926361 -
dc.identifier.issn 1558-1101 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/46863 -
dc.description.abstract Many system-level management and optimization techniques need accurate estimates of power consumption and performance. Earlier research has proposed many high-level/source-level estimation modeling works, particularly for basic blocks. However, most of them still need to execute the target software at least once on a fine-grained simulator or real hardware to extract required features. This paper proposes a performance/power prediction framework, called Deep Power Meter (DeepPM), which estimates them accurately only using the compiled binary. Inspired by the deep learning techniques in natural language processing, we convert the program instructions in the form of vectors and predict the average power and performance of basic blocks based on a transformer model. In addition, unlike existing works based on a Long Short-Term Memory (LSTM) model structure, which only works for basic blocks with a small number of instructions, DeepPM provides highly accurate results for long basic blocks, which takes the majority of the execution time for actual application runs. In our evaluation conducted with SPEC2006 benchmark suite, we show that DeepPM can provide accurate prediction for performance and power consumption with 10.2% and 12.3% error, respectively. DeepPM also outperforms the LSTM-based model by up to 67.2% and 34.9% error for performance and power, respectively. © 2022 EDAA. -
dc.language English -
dc.publisher IEEE Council on Electronic Design Automation -
dc.title DeepPM: Transformer-based Power and Performance Prediction for Energy-Aware Software -
dc.type Conference Paper -
dc.identifier.doi 10.23919/DATE54114.2022.9774589 -
dc.identifier.scopusid 2-s2.0-85130793232 -
dc.identifier.bibliographicCitation Shim, Jun S. (2022-03-23). DeepPM: Transformer-based Power and Performance Prediction for Energy-Aware Software. Design Automation and Test in Europe Conference, 1491–1496. doi: 10.23919/DATE54114.2022.9774589 -
dc.identifier.url https://www.date-conference.com/programme -
dc.citation.conferencePlace US -
dc.citation.conferencePlace Virtual -
dc.citation.endPage 1496 -
dc.citation.startPage 1491 -
dc.citation.title Design Automation and Test in Europe Conference -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

김예성
Kim, Yeseong김예성

Department of Electrical Engineering and Computer Science

read more

Total Views & Downloads