Cited time in webofscience Cited time in scopus

A Framework for Efficient and Binary Clustering in High-Dimensional Space

Title
A Framework for Efficient and Binary Clustering in High-Dimensional Space
Author(s)
Hernandez-Cano, AlejandroKim, YeseongImani, Mohsen
Issued Date
2021-02-04
Citation
Design Automation and Test in Europe Conference, pp.1859 - 1864
Type
Conference Paper
ISBN
9783981926354
ISSN
1558-1101
Abstract
Today's applications generate a large amount of data where the majority of the data are not associated with any labels. Clustering methods are the most commonly used algorithms for data analysis, especially in healthcare. However, running clustering algorithms on embedded devices is significantly slow as the computation involves a large amount of complex pairwise similarity measurements. In this paper, we proposed FebHD, an adaptive framework for efficient and fully binary clustering in high-dimensional space. Instead of using complex similarity metrics, e.g., Euclidean distance, FebHD introduces a nonlinear encoder to map data points into sparse high-dimensional space. FebHD encoder simplifies the similarity search, the most costly and frequent clustering operation, to Hamming distance, which can be accelerated in today's hardware. FebHD performs clustering by assigning each data point to a set of initialized centers. It then updates the centers adaptively based on: (i) data points assigned to each cluster, and (ii) the confidence of the model on the clustering prediction. This adaptive update enables FebHD to provide a high quality of clustering with very few learning iterations. We also propose an end-to-end hardware accelerator that parallelizes the entire FebHD computation by exploiting FPGA bit-level granularity. Our evaluation shows that FebHD provides comparable accuracy to state-of-the-art clustering algorithms, while providing 6.2× and 9.1× (4.7× and 5.8×) faster and higher energy efficiency when running on the same FPGA (GPU) platform. © 2021 EDAA.
URI
http://hdl.handle.net/20.500.11750/46947
DOI
10.23919/DATE51398.2021.9474008
Publisher
IEEE Council on Electronic Design Automation
Related Researcher
  • 김예성 Kim, Yeseong
  • Research Interests Embedded Systems for Edge Intelligence; Brain-Inspired HD Computing for AI; In-Memory Computing
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Electrical Engineering and Computer Science Computation Efficient Learning Lab. 2. Conference Papers

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE