Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Gwon, Kihak -
dc.contributor.author Park, Jong-Deok -
dc.contributor.author Lee, Seonhwa -
dc.contributor.author Yu, Jong-Sung -
dc.contributor.author Lee, Do Nam -
dc.date.accessioned 2024-08-30T09:10:14Z -
dc.date.available 2024-08-30T09:10:14Z -
dc.date.created 2024-03-28 -
dc.date.issued 2024-04 -
dc.identifier.issn 0141-8130 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/56828 -
dc.description.abstract Local antibiotic application might mitigate the burgeoning problem of rapid emergence of antibiotic resistance in pathogenic microbes. To accomplish this, delivery systems must be engineered. Hydrogels have a wide range of physicochemical properties and can mimic the extracellular matrix, rendering them promising materials for local antibacterial agent application. Here, we synthesized antibacterial silicon (Si)-based nickel (Ni) nanoflowers (Si@Ni) and encapsulated them in gelatin methacryloyl (GelMA) using microfluidic and photo-crosslink technology, constructing uniform micro-sized hydrogel spheres (Si@Ni-GelMA). Si@Ni and Si@Ni-GelMA were characterized using X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Injectable Si@Ni-GelMA exhibited excellent antibacterial activities owing to the antibiotic effect of Ni against Pseudomonas aeruginosa, Klebsiella pneumoniae, and methicillin-resistant Staphylococcus aureus, while showing negligible cytotoxicity. Therefore, the Si@Ni-GelMA system can be used as drug carriers owing to their injectability, visible light-mediated crosslinking, degradation, biosafety, and superior antibacterial properties. © 2024 -
dc.language English -
dc.publisher Elsevier -
dc.title Fabrication of silicon-based nickel nanoflower-encapsulated gelatin microspheres as an active antimicrobial carrier -
dc.type Article -
dc.identifier.doi 10.1016/j.ijbiomac.2024.130617 -
dc.identifier.wosid 001201184400001 -
dc.identifier.scopusid 2-s2.0-85187203403 -
dc.identifier.bibliographicCitation International Journal of Biological Macromolecules, v.264, no.2 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Antibacterial nanoflower -
dc.subject.keywordAuthor Photo-crosslinked microsphere -
dc.subject.keywordAuthor Biocompatibility -
dc.subject.keywordPlus MICROPARTICLES -
dc.subject.keywordPlus OXIDE -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus BACTERIA -
dc.subject.keywordPlus RELEASE -
dc.subject.keywordPlus ANTIBACTERIAL -
dc.subject.keywordPlus HYDROGELS -
dc.subject.keywordPlus COMPLEX -
dc.subject.keywordPlus SPHERES -
dc.citation.number 2 -
dc.citation.title International Journal of Biological Macromolecules -
dc.citation.volume 264 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Biochemistry & Molecular Biology; Chemistry; Polymer Science -
dc.relation.journalWebOfScienceCategory Biochemistry & Molecular Biology; Chemistry, Applied; Polymer Science -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Light, Salts and Water Research Group 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE