WEB OF SCIENCE
SCOPUS
Nanomesh electronics, renowned for their breathability and compatibility with long-term skin attachment, face significant challenges in achieving high-resolution micropatterning, which limits their applications in advanced devices. To address this, a method to fabricate durable, breathable, and highly conductive micropatterned nanomesh electrodes (MPNEs) with line widths as narrow as 10 mu m was developed. Using a double-side exposure technique, precise patterning was achieved on a polyimide nanomesh substrate. Silver nanowires (AgNWs) were selectively deposited via vacuum filtration, ensuring optimal alignment for enhanced conductivity. The MPNEs exhibit excellent electrical performance, achieving a sheet resistance of 3.9 Omega sq-1 at an AgNW loading of 1.6 mu g mm-2. They maintain consistent conductivity across various line widths and lengths, demonstrating high reproducibility. Mechanical testing confirmed exceptional durability under significant deformations, including bending, folding, and twisting. Furthermore, the porous structure remained breathable after AgNW deposition, preserving gas and moisture permeability. The versatility of MPNEs was demonstrated by fabricating intricate patterns such as interdigitated electrodes, multielectrode arrays, and coil antennas. These findings underscore the potential of MPNEs for advanced wearable electronics and multifunctional devices.
더보기