Oral drug delivery remains a clinically preferred route for colorectal cancer therapy due to its noninvasive nature and patient compliance. However, conventional formulations suffer from premature degradation in the gastric environment and poor site-specific targeting in the intestine, significantly reducing therapeutic efficacy. Here, we introduce an intestinal therapeutic agent delivery microrobot (ITAM) composed of a therapeutic agent (TA) encapsulated core, a magnetic nanoparticle (MNP) layer for precise magnetic guidance, and a protective layer to minimize the loss of functional materials. This layered structure enables gastric-resilient transit, magnetic localization to colorectal lesions, and colonic pH-triggered release of TAs. In vivo studies demonstrate that ITAM achieves superior lesion-specific targeting and therapeutic efficacy enhancement compared to conventional oral delivery. Furthermore, ITAM serves as a versatile platform for delivering various therapeutic substances, including drugs, cells, and beneficial microorganisms, broadening its potential applications in intestinal disease treatment and gut health modulation.