Detail View

DC Field Value Language
dc.contributor.author Choi, Rockhyun -
dc.contributor.author Lee, Hyunki -
dc.contributor.author Kim, Bong-Seok -
dc.contributor.author Kim, Sangdong -
dc.contributor.author Kim, Min Young -
dc.date.accessioned 2026-01-21T16:40:15Z -
dc.date.available 2026-01-21T16:40:15Z -
dc.date.created 2025-12-26 -
dc.date.issued 2025-12 -
dc.identifier.issn 2079-9292 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/59379 -
dc.description.abstract This study presents a noise-resilient masked-face detection framework optimized for the NVIDIA Jetson AGX Orin, which improves detection precision by approximately 30% under severe Gaussian noise (variance 0.10) while reducing denoising latency by over 42% and increasing end-to-end throughput by more than 30%. The proposed system integrates a lightweight DnCNN-based denoising stage with the YOLOv11 detector, employing Quantize-Dequantize (QDQ)-based INT8 post-training quantization and a parallel CPU-GPU execution pipeline to maximize edge efficiency. The experimental results demonstrate that denoising preprocessing substantially restores detection accuracy under low signal quality. Furthermore, comparative evaluations confirm that 8-bit quantization achieves a favorable accuracy-efficiency trade-off with only minor precision degradation relative to 16-bit inference, proving the framework's robustness and practicality for real-time, resource-constrained edge AI applications. -
dc.language English -
dc.publisher MDPI AG -
dc.title Noise-Resilient Masked Face Detection Using Quantized DnCNN and YOLO -
dc.type Article -
dc.identifier.doi 10.3390/electronics15010143 -
dc.identifier.wosid 001657314700001 -
dc.identifier.scopusid 2-s2.0-105027021286 -
dc.identifier.bibliographicCitation Electronics (Basel), v.15, no.1 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor edge AI -
dc.subject.keywordAuthor object detection -
dc.subject.keywordAuthor YOLO -
dc.subject.keywordAuthor noise reduction -
dc.subject.keywordAuthor DnCNN -
dc.citation.number 1 -
dc.citation.title Electronics (Basel) -
dc.citation.volume 15 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Computer Science; Engineering; Physics -
dc.relation.journalWebOfScienceCategory Computer Science, Information Systems; Engineering, Electrical & Electronic; Physics, Applied -
dc.type.docType Article -
Show Simple Item Record

File Downloads

공유

qrcode
공유하기

Related Researcher

이현기
Lee, Hyunki이현기

Division of Intelligent Robotics

read more

Total Views & Downloads

???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???: