Detail View
Noise-Resilient Masked Face Detection Using Quantized DnCNN and YOLO
Citations
WEB OF SCIENCE
Citations
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Choi, Rockhyun | - |
| dc.contributor.author | Lee, Hyunki | - |
| dc.contributor.author | Kim, Bong-Seok | - |
| dc.contributor.author | Kim, Sangdong | - |
| dc.contributor.author | Kim, Min Young | - |
| dc.date.accessioned | 2026-01-21T16:40:15Z | - |
| dc.date.available | 2026-01-21T16:40:15Z | - |
| dc.date.created | 2025-12-26 | - |
| dc.date.issued | 2025-12 | - |
| dc.identifier.issn | 2079-9292 | - |
| dc.identifier.uri | https://scholar.dgist.ac.kr/handle/20.500.11750/59379 | - |
| dc.description.abstract | This study presents a noise-resilient masked-face detection framework optimized for the NVIDIA Jetson AGX Orin, which improves detection precision by approximately 30% under severe Gaussian noise (variance 0.10) while reducing denoising latency by over 42% and increasing end-to-end throughput by more than 30%. The proposed system integrates a lightweight DnCNN-based denoising stage with the YOLOv11 detector, employing Quantize-Dequantize (QDQ)-based INT8 post-training quantization and a parallel CPU-GPU execution pipeline to maximize edge efficiency. The experimental results demonstrate that denoising preprocessing substantially restores detection accuracy under low signal quality. Furthermore, comparative evaluations confirm that 8-bit quantization achieves a favorable accuracy-efficiency trade-off with only minor precision degradation relative to 16-bit inference, proving the framework's robustness and practicality for real-time, resource-constrained edge AI applications. | - |
| dc.language | English | - |
| dc.publisher | MDPI AG | - |
| dc.title | Noise-Resilient Masked Face Detection Using Quantized DnCNN and YOLO | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.3390/electronics15010143 | - |
| dc.identifier.wosid | 001657314700001 | - |
| dc.identifier.scopusid | 2-s2.0-105027021286 | - |
| dc.identifier.bibliographicCitation | Electronics (Basel), v.15, no.1 | - |
| dc.description.isOpenAccess | TRUE | - |
| dc.subject.keywordAuthor | edge AI | - |
| dc.subject.keywordAuthor | object detection | - |
| dc.subject.keywordAuthor | YOLO | - |
| dc.subject.keywordAuthor | noise reduction | - |
| dc.subject.keywordAuthor | DnCNN | - |
| dc.citation.number | 1 | - |
| dc.citation.title | Electronics (Basel) | - |
| dc.citation.volume | 15 | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Computer Science; Engineering; Physics | - |
| dc.relation.journalWebOfScienceCategory | Computer Science, Information Systems; Engineering, Electrical & Electronic; Physics, Applied | - |
| dc.type.docType | Article | - |
File Downloads
공유
Total Views & Downloads
???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???:
