Cited time in webofscience Cited time in scopus

Force disturbance observer-based force control for compliant interaction with dynamic environment

Title
Force disturbance observer-based force control for compliant interaction with dynamic environment
Author(s)
Samuel, KangwagyeCheon, DasolOh, Sehoon
Issued Date
2021-03-07
Citation
2021 IEEE International Conference on Mechatronics, ICM 2021, pp.9385628
Type
Conference Paper
ISBN
9781728144429
Abstract
Disturbances are one of the major challenges that should be dealt with when designing high performance force control systems for robots that interact with unknown environments. To achieve high performance dynamic interaction, this paper presents a robust force control system that implements a force disturbance observer (FDOB). Dynamic compliance with the environment is greatly improved with this control technique. The whole force control structure consists of a servo system with a force sensor, the proposed FDOB, feedforward and feedback controllers, and the low-pass filter for attenuating measurement noises of the force sensor feedback signal. The nominal model of the proposed FDOB is obtained by nonparametric system identification method. The FDOB then estimates disturbances by utilizing the motor torque and force sensor measurement signals as its inputs. Theoretical analyses of the FDOB and the overall force control system are conducted. To validate the proposed control structure, experiments are conducted while considering various scenarios from where it is found out that it shows superior performance over the conventional force control method. © 2021 IEEE.
URI
http://hdl.handle.net/20.500.11750/46938
DOI
10.1109/ICM46511.2021.9385628
Publisher
Institute of Electrical and Electronics Engineers Inc.
Related Researcher
  • 오세훈 Oh, Sehoon
  • Research Interests Research on Human-friendly motion control; Development of human assistance;rehabilitation system; Design of robotic system based on human musculoskeletal system; Analysis of human walking dynamics and its application to robotics; 친인간적인 운동제어 설계연구; 인간 보조;재활 시스템의 설계 및 개발연구; 인간 근골격계에 기초한 로봇기구 개발연구; 보행운동 분석과 모델 및 로봇기구에의 응용
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Robotics and Mechatronics Engineering MCL(Motion Control Lab) 2. Conference Papers

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE