Cited time in webofscience Cited time in scopus

Study on the Jumping Robot using an Air Reaction Wheel for Posture Control

Title
Study on the Jumping Robot using an Air Reaction Wheel for Posture Control
Alternative Title
에어 리엑션 휠을 이용한 점핑 로봇의 자세 제어에 관한 연구
Author(s)
Myeongjin Kim
DGIST Authors
Myeongjin KimDongwon YunYongseob Lim
Advisor
윤동원
Co-Advisor(s)
Yongseob Lim
Issued Date
2024
Awarded Date
2024-02-01
Type
Thesis
Description
자세제어(Balance control);리엑션 휠(Reaction wheel);에어 리엑션 휠(Air Reaction Wheel);점핑 로봇(Jumping Robot);호핑 모션(hopping motion);수직 점프(vertical jumping);SLIP 모델(SLIP model)
Abstract
In this paper, we propose a novel balance control method called Air Reaction Wheel (ARW) for a small-scale legged jumping robot, which can generate high torque while being compact and lightweight. The ARW generates torque in the same direction through the combination of the torque induced by pushing the air, and the moment of inertia of ARW with the angular acceleration of the motor, resulting in high torque performance while being lighter and more compact than conventional balance control mechanisms. To validate the torque performance of the ARW, we conduct dynamic analysis and CFD simulations of the ARW and utilize a CCF model to find the optimal shape for generating high torque. Furthermore, we verify that the proposed method generates high torque while being compact and lightweight compared to the conventional methods through theoretical analysis and comparative experiments on the ARW and existing mechanisms regarding torque performance. Lastly, we conducted jumping, landing, and hopping experiments by attaching the optimized Air Reaction Wheel model to a jumping robot, and through experimental results, we verified that the proposed mechanism contributes to stable jumping and landing.|본 논문에서는 소규모의 다리가 달린 점프 로봇을 위한 새로운 균형 제어 방법을 제안합니다. 이 방법은 Air Reaction Wheel (ARW)로 명명되며, 컴팩트하고 가벼운 동시에 높은 토크를 생성할 수 있습니다. ARW 는 공기를 밀어내는 토크와 모터의 각 가속도에 따른 ARW 의 관성 모멘트의 조합을 통해 같은 방향으로 토크를 생성하여, 기존의 균형 제어 메커니즘보다 더 가벼우며 컴팩트하면서도 높은 토크 성능을 보여줍니다. ARW 의 토크 성능을 검증하기 위해, 우리는 ARW 의 동적 분석과 CFD 시뮬레이션을 수행하고, CCF 모델을 활용하여 높은 토크를 생성하기 위한 최적의 형태를 찾습니다. 또한 이론적 분석과 ARW 와 기존 메커니즘에 대한 토크 성능에 대한 비교 실험을 통해 제안된 방법이 기존 방법에 비해 컴팩트하고 가벼우면서도 높은 토크를 생성한다는 것을 검증합니다. 마지막으로, 최적화된 Air Reaction Wheel 모델을 점프 로봇에 부착하여 점프와 착륙 실험, 호핑 모션을 수행하고, 실험 결과를 통해 제안된 메커니즘이 안정적인 점프와 착륙에 기여한다는 것을 검증했습니다.
Table Of Contents
I. Introduction 1
II. Jumping Robot with Momentum Wheel mechanism 7
2.1 Performance Analysis of a Jumping Robot with Momentum Wheel through the Simulation 9
2.1.1 Design of Guinea fowl Jumping Robot using Linear Actuator with Cam 9
2.1.2 Simulation and Experiment of Momentum Wheel mechanism 14
2.1.3 Simulation results of continuous jumping 26
2.1.4 Simulation results of collision with obstacles 27
2.2 Design of Guinea fowl Jumping Robot based on torsion spring with Momentum wheel 37
2.3 Design and analysis of Momentum Wheel mechanism 46
2.4 Experiment Results 53
2.5 Discussion 60
2.6 Chapter 2: Conclusion 64
III. Compact Posture Control System for Jumping Robot using an Air Reaction Wheel 65
3.1 Geometry design of ARW model 67
3.2 Parameter optimization of ARW model 72
3.3 Comparison between the conventional balance control method and optimized ARW model 78
3.4 Dynamic analysis of hopping motion with one-axis ARW 83
3.5 Design and implementation of Robotic platform 88
3.6 Experiment of Jumping without ARW 91
3.7 Experiment of Landing motion with ARW 93
3.8 Chapter 3: Conclusion 97
IV. 3-axes Posture Control System for Jumping Robot using an Air Reaction Wheel 98
4.1 Design of Jumping Robot with 3-axes ARW mechanism 99
4.2 Implementation of Jumping Robot with 3-axes ARW mechanism 105
4.3 Control method for Jumping Robot with 3-axes ARW mechanism 106
4.4 Experiment Results 117
4.4.1 Jumping Experiment without 3-axes ARW mechanism 117
4.4.2 Hopping Experiment with 3-axes ARW mechanism 120
4.5 Discussion 126
4.6 Future work 133
V. Conclusion 135
VI. References 136
요 약 문 140
URI
http://hdl.handle.net/20.500.11750/48011

http://dgist.dcollection.net/common/orgView/200000723631
DOI
10.22677/THESIS.200000723631
Degree
Doctor
Department
Department of Robotics and Mechatronics Engineering
Publisher
DGIST
Related Researcher
  • 윤동원 Yun, Dongwon
  • Research Interests Biomimetic Robot; Soft Robotics; Robot elementary technology : Sensors and actuators; Study on the medical application; Study on the industrial application
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Robotics and Mechatronics Engineering Theses Ph.D.

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE