Detail View

DC Field Value Language
dc.contributor.author Kim, Dongsu -
dc.contributor.author Jeong, Heejae -
dc.contributor.author Pyo, Goeun -
dc.contributor.author Heo, Su Jin -
dc.contributor.author Baik, Seunghun -
dc.contributor.author Kim, Seonhyoung -
dc.contributor.author Choi, Hong Soo -
dc.contributor.author Kwon, Hyuk-Jun -
dc.contributor.author Jang, Jae Eun -
dc.date.accessioned 2024-06-20T12:10:13Z -
dc.date.available 2024-06-20T12:10:13Z -
dc.date.created 2024-05-27 -
dc.date.issued 2024-07 -
dc.identifier.issn 2198-3844 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/56657 -
dc.description.abstract Ferroelectric field-effect transistors (FeFETs) are increasingly important for in-memory computing and monolithic 3D (M3D) integration in system-on-chip (SoC) applications. However, the high-temperature processing required by most ferroelectric memories can lead to thermal damage to the underlying device layers, which poses significant physical limitations for 3D integration processes. To solve this problem, the study proposes using a nanosecond pulsed laser for selective annealing of hafnia-based FeFETs, enabling precise control of heat penetration depth within thin films. Sufficient thermal energy is delivered to the IGZO oxide channel and HZO ferroelectric gate oxide without causing thermal damage to the bottom layer, which has a low transition temperature (<250 degrees C). Using optimized laser conditions, a fast response time (<1 mu s) and excellent stability (cycle > 106, retention > 106 s) are achieved in the ferroelectric HZO film. The resulting FeFET exhibited a wide memory window (>1.7 V) with a high on/off ratio (>10(5)). In addition, moderate ferroelectric properties (2P-r of 14.7 mu C cm(-2)) and pattern recognition rate-based linearity (potentiation: 1.13, depression: 1.6) are obtained. These results demonstrate compatibility in HZO FeFETs by specific laser annealing control and thin-film layer design for various structures (3D integrated, flexible) with neuromorphic applications. -
dc.language English -
dc.publisher Wiley -
dc.title Low-Temperature Nanosecond Laser Process of HZO-IGZO FeFETs toward Monolithic 3D System on Chip Integration -
dc.type Article -
dc.identifier.doi 10.1002/advs.202401250 -
dc.identifier.wosid 001221270700001 -
dc.identifier.scopusid 2-s2.0-85192823795 -
dc.identifier.bibliographicCitation Kim, Dongsu. (2024-07). Low-Temperature Nanosecond Laser Process of HZO-IGZO FeFETs toward Monolithic 3D System on Chip Integration. Advanced Science, 11(28). doi: 10.1002/advs.202401250 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor emerging memory devices -
dc.subject.keywordAuthor monolithic 3D integration -
dc.subject.keywordAuthor IGZO-HZO FeFET -
dc.subject.keywordAuthor ferroelectric -
dc.subject.keywordAuthor low thermal budget -
dc.subject.keywordAuthor laser anneal-ing -
dc.subject.keywordPlus FERROELECTRICS -
dc.citation.number 28 -
dc.citation.title Advanced Science -
dc.citation.volume 11 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

권혁준
Kwon, Hyuk-Jun권혁준

Department of Electrical Engineering and Computer Science

read more

Total Views & Downloads