Detail View

Hysteresis Compensation of Flexible Continuum Manipulator using RGBD Sensing and Temporal Convolutional Network
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Hysteresis Compensation of Flexible Continuum Manipulator using RGBD Sensing and Temporal Convolutional Network
Issued Date
2024-07
Citation
Park, Junhyun. (2024-07). Hysteresis Compensation of Flexible Continuum Manipulator using RGBD Sensing and Temporal Convolutional Network. IEEE Robotics and Automation Letters, 9(7), 6091–6098. doi: 10.1109/LRA.2024.3398501
Type
Article
Author Keywords
HysteresisKinematicsTendon/Wire MechanismBendingFastenersMachine Learning for Robot ControlManipulatorsModelingTask analysisand Learning for Soft RobotsControlFiducial markers
Keywords
DEFORMATIONROBOTMODEL
ISSN
2377-3766
Abstract
Flexible continuum manipulators are valued for minimally invasive surgery, offering access to confined spaces through nonlinear paths. However, cable-driven manipulators face control difficulties due to hysteresis from cabling effects such as friction, elongation, and coupling. These effects are difficult to model due to nonlinearity and the difficulties become even more evident when dealing with long and coupled, multi-segmented manipulator. This paper proposes a data-driven approach based on Deep Neural Networks (DNN) to capture these nonlinear and previous states-dependent characteristics of cable actuation. We collect physical joint configurations according to command joint configurations using RGBD sensing and 7 fiducial markers to model the hysteresis of the proposed manipulator. Result on a study comparing the estimation performance of four DNN models show that the Temporal Convolution Network (TCN) demonstrates the highest predictive capability. Leveraging trained TCNs, we build a control algorithm to compensate for hysteresis. Tracking tests in task space using unseen trajectories show that the proposed control algorithm reduces the average position and orientation error by 61.39% (from $\mathbf {13.7mm}$ to $\mathbf {5.29 mm}$) and 64.04% (from 31.17$^{\circ }$ to 11.21$^{\circ }$), respectively. This result implies that the proposed calibrated controller effectively reaches the desired configurations by estimating the hysteresis of the manipulator. Applying this method in real surgical scenarios has the potential to enhance control precision and improve surgical performance. IEEE
URI
http://hdl.handle.net/20.500.11750/57108
DOI
10.1109/LRA.2024.3398501
Publisher
Institute of Electrical and Electronics Engineers Inc.
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

황민호
Hwang, Minho황민호

Department of Robotics and Mechatronics Engineering

read more

Total Views & Downloads