Detail View

DC Field Value Language
dc.contributor.author Kim, Duhee -
dc.contributor.author Bissannagari, Murali -
dc.contributor.author Kim, Boil -
dc.contributor.author Hong, Nari -
dc.contributor.author Park, Jaeu -
dc.contributor.author Lim, Hyeongtae -
dc.contributor.author Lee, Junhee -
dc.contributor.author Lee, Jungha -
dc.contributor.author Kim, Yoon Kyoung -
dc.contributor.author Cho, Youngjae -
dc.contributor.author Lee, Kwang -
dc.contributor.author Lee, Junghyup -
dc.contributor.author Yoon, Jong-Hyeok -
dc.contributor.author Jang, Jae Eun -
dc.contributor.author Tsai, David -
dc.contributor.author Lee, Sanghoon -
dc.contributor.author Kwon, Hyuk-Jun -
dc.contributor.author Choe, Han Kyoung -
dc.contributor.author Kang, Hongki -
dc.date.accessioned 2025-04-28T19:10:23Z -
dc.date.available 2025-04-28T19:10:23Z -
dc.date.created 2025-04-24 -
dc.date.issued 2025-04 -
dc.identifier.issn 2397-4621 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/58326 -
dc.description.abstract Transparent electro-optical neural interfacing technologies offer simultaneous high-spatial-resolution microscopic imaging, and high-temporal-resolution electrical recording and stimulation. However, fabricating transparent, flexible, and mechanically robust neural electrodes with high electrochemical performance remains challenging. In this study, we fabricated transparent (72.7% at 570 nm), mechanically robust (0.05% resistance change after 50k bending cycles) ultrathin Au microelectrodes for micro-electrocorticography (mu ECoG) using a hexadentate metal-polymer ligand bonding with an EDTA/PSS seed layer. These transparent mu ECoG arrays, fabricated with biocompatible gold, exhibit excellent electrochemical properties (0.73 Omegacm2) for neural recording and stimulation with long-term stability. We recorded brain surface waves in vivo, maintaining a low baseline noise and a high signal-to-noise ratio during acute and two-week recordings. In addition, we successfully performed optogenetic modulation without light-induced artifacts at 7.32 mW/mm2 laser power density. This approach shows great potential for scalable, implantable neural electrodes and wearable optoelectronic devices in digital healthcare systems. -
dc.language English -
dc.publisher Nature Publishing Group -
dc.title Hexagonal metal complex based mechanically robust transparent ultrathin gold μECoG for electro-optical neural interfaces -
dc.type Article -
dc.identifier.doi 10.1038/s41528-025-00403-w -
dc.identifier.wosid 001464685600002 -
dc.identifier.scopusid 2-s2.0-105012842040 -
dc.identifier.bibliographicCitation npj Flexible Electronics, v.9, no.1 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordPlus ARRAY -
dc.subject.keywordPlus MICROELECTRODES -
dc.subject.keywordPlus STIMULATION -
dc.citation.number 1 -
dc.citation.title npj Flexible Electronics -
dc.citation.volume 9 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Engineering; Materials Science -
dc.relation.journalWebOfScienceCategory Engineering, Electrical & Electronic; Materials Science, Multidisciplinary -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

이광
Lee, Kwang이광

Department of Brain Sciences

read more

Total Views & Downloads