WEB OF SCIENCE
SCOPUS
Transparent electro-optical neural interfacing technologies offer simultaneous high-spatial-resolution microscopic imaging, and high-temporal-resolution electrical recording and stimulation. However, fabricating transparent, flexible, and mechanically robust neural electrodes with high electrochemical performance remains challenging. In this study, we fabricated transparent (72.7% at 570 nm), mechanically robust (0.05% resistance change after 50k bending cycles) ultrathin Au microelectrodes for micro-electrocorticography (mu ECoG) using a hexadentate metal-polymer ligand bonding with an EDTA/PSS seed layer. These transparent mu ECoG arrays, fabricated with biocompatible gold, exhibit excellent electrochemical properties (0.73 Omega